
Cellular automata beyond 100k cores: MPI vs Fortran coarrays

Anton Shterenlikht
Mech Eng Dept, The University of Bristol

Bristol, UK
mexas@bristol.ac.uk

Luis Cebamanos
EPCC, The University of Edinburgh

Edinburgh, UK
l.cebamanos@epcc.ed.ac.uk

ABSTRACT

Fortran coarrays are an attractive alternative to MPI due to a famil-

iar Fortran syntax, single sided communications and implementa-

tion in the compiler. Scaling of coarrays is compared in this work

to MPI, using cellular automata (CA) 3D Ising magnetisation mini-

apps, built with the CASUPCA library, https://cgpack.sourceforge.io,

developed by the authors. Ising energy andmagnetisation were cal-

culated with MPI_ALLREDUCE and Fortran 2018 co_sum collectives.

The work was done on ARCHER (Cray XC30) up to the full ma-

chine capacity: 109,056 cores. Ping-pong latency and bandwidth

results are very similar with MPI and with coarrays for message

sizes from 1B to several MB. MPI halo exchange (HX) scaled better

than coarray HX, which is surprising because both algorithms use

pair-wise communications: MPI IRECV/ISEND/WAITALL vs Fortran

sync images. Adding OpenMP to MPI or to coarrays resulted in

worse L2 cache hit ratio, and lower performance in all cases, even

though the NUMA effects were ruled out. This is likely because

the CA algorithm is memory and network bound. The sampling

and tracing analysis shows good load balancing in compute in all

miniapps, but imbalance in communication, indicating that the dif-

ference in performance between MPI and coarrays is likely due to

parallel libraries (MPICH2 vs libpgas) and the Cray hardware spe-

cific libraries (uGNI vs DMAPP). Overall, the results look promis-

ing for coarray use beyond 100k cores. However, further coarray

optimisation is needed to narrow the performance gap between

coarrays and MPI.

CCS CONCEPTS

• Software and its engineering→ Parallel programming lan-

guages; Massively parallel systems; Software libraries and

repositories; • Applied computing → Physical sciences and

engineering; Physics;

KEYWORDS

Fortran, coarrays, MPI, miniapps, Cray, cellular automata

ACM Reference Format:

Anton Shterenlikht and Luis Cebamanos. 2018. Cellular automata beyond

100k cores: MPI vs Fortran coarrays. In 25th European MPI Users’ Group

Meeting (EuroMPI ’18), September 23–26, 2018, Barcelona, Spain. ACM, New

York, NY, USA, 10 pages. https://doi.org/10.1145/3236367.3236384

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EuroMPI ’18, September 23–26, 2018, Barcelona, Spain

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6492-8/18/09. . . $15.00
https://doi.org/10.1145/3236367.3236384

1 INTRODUCTION

Cellular automata (CA) are a popular modelling tool for discrete

systems on regular grids. The early use of CA is associated with

the work of John Von Neumann and Stanislaw Ulam in 1940s on

self-reproducing systems and theory of computation [5]. By the

end of the 20th century CA found applications in very diverse ar-

eas of science and technology, including gas dynamics, diffusion,

phase transitions, multiphase flow and magnetisation [7]. Recent

uses of CA included epidemiology [16], biology [27], fire spread

[20], dynamic recrystallisation [28], fracture [8, 22] and geology

[1]. Finally, we note that lattice Boltzmann (LB) methods, popular

in CFD, are a variant of CA [26].

At the heart of any CA is an idea that a physical space is split

into a regular grid of identical cells, each with a discrete value from

a pre-determined fixed set. An initial CA state must be chosen,

from which CA can evolve iteratively. In each CA iteration the

state of every cell is updated based on its state and the states of

the cells in some neighbourhood of this cell. Thus an important

property of a CA is locality, i.e. the state of a cell depends only

on a local neighbourhood of this cells and any process propagates

across a CA model at a rate of the width of the neighbourhood per

iteration. Popular neighbourhoods are Moore’s (8 cells in 2D, 26

cells in 3D) and Von Neumann’s (4 cells in 2D and 6 cells in 3D)

which have width of a single cell. The reader is referred to a recent

CA review paper for more details [29].

The simplicity of CA formulation and update rules makes it rel-

atively very cheap computationally because (1) cells require very

little data, i.e. CA can be implemented as a multi-dimensional ar-

ray of an intrinsic type; (2) no equilibrium checks, or other whole

model operations are necessary; (3) the update rules (actual calcu-

lation) are typically very simple and fast. This means that much

larger models can be analysed in a given time with CA than with

other, more dominant numerical methods such as finite elements.

Moreover, there are cases where there is no good PDE descrip-

tion of the problem, or the boundary is too complex (fractal in

the limit), requiring toomany elements for adequate discretisation.

One such case is a problem of transgranular cleavage fracture prop-

agation in polycrystals [22, 23],

As a regular grids method, CA lends itself naturally to parallel

implementation, e.g. via partitionedmulti-dimensional arrays with

halos. We note here some recent performance studies of CA. In

2004 [17] studied performance of CA of Fortran and C LB codes on

RISC and vector architectures with OpenMP and COMPAS intra-

node comms and MPI for inter-node comms. They achieved scal-

ing of 512 CPUs with parallel efficiency of over 70%. [12] showed

strong scaling of a LB dendritic growth model in Fortran90 with

MPI to 3k cores on Kraken (ONRL, Cray XT5 system). [19] im-

plemented CA in object-oriented C99 and achieved less than ×10

https://cgpack.sourceforge.io
https://doi.org/10.1145/3236367.3236384
https://doi.org/10.1145/3236367.3236384

EuroMPI ’18, September 23–26, 2018, Barcelona, Spain Anton Shterenlikht and Luis Cebamanos

speed-up on 15 SGI Altix ICE 8200 nodes. [14] used hardware coun-

ters for an analysis of a game of life CA code implemented in C and

MPI (GCC + OpenMPI) on modern x86-64 CPUs up to 64 MPI pro-

cesses. Perhaps unsurprisingly they conclude that performance is

dependent on efficient use of cache.

In this work we describe how CA can be implemented in For-

tran coarrays and compare performance of Ising magnetisation CA

miniapps with coarrays and MPI on Cray XC30.

2 FORTRAN COARRAYS

Coarrays have been available on Cray for over 20 years, as an ex-

tension to the Fortran standard. They were standardised in Fortran

2008 [11], which is a PGAS (Partititioned Global Address Space)

language. Further coarray features, such as collectives, teams, events

and facilities for dealing with failures appear in the Fortran 2018

standard.

Coarrays are a native Fortran means for SPMD programming.

Square bracket syntax is used to define or refer to a coarray object:

integer :: i, ic[*], k(10,10), kc (10 ,10)[*]

real , allocatable :: r(:,:,:), rc(:,:,:)[:,:,:]

all variables declared with [] are coarray variables, and : for al-

locatable variables means that dimensions and codimensions are

chosen at run time, when a certain number of identical copies of

the executable (images) are created by the operating system, which

are executing asynchronously [25]. Each image has read/write ac-

cess to coarray variables on all other images:

ic [5]= i ! The invoking image copies its value of i

! to ic on image 5 (remote write)

! allocate rc on all images - implicit sync all

allocate(rc(3,3,3) [5,5,*])

! The invoking image copies whole array rc from

! image with coindex set [1,2,3] to its own copy

! of r (remote read)

r(:,:,:) = rc(:,:,:) [1,2,3]

The standard defines execution segments in a Fortran coarray

program, which are separated by image control statements, such

as sync all or sync images. sync all is a global barrier, similar

to MPI_barrier.

Coarrays can interoperate with MPI or OpenMP, although to

date there are only a few examples of such hybrid codes. The Euro-

pean Centre for Medium-range Weather Forecasts (ECMWF) has

used coarrays in combination with MPI and OpenMP to achieve

moderate scaling improvements [15]. Coarrays also have beenused

together with OpenMP in plasma codes [18].

3 CASUP LIBRARY FOR CA ON HPC

The authors have previously demonstrated that scalable CA mini-

apps can be build with their BSD licensed library CASUP (CA for

SUPercomputers) [6, 21–25], https://cgpack.sourceforge.io. Micro-

structure solidification miniapps scaled to 32k cores on HECToR

(Cray XE6) [21, 22], Fig. 1, andmultiscale cellular automatafinite el-

ement (CAFE) simulations of fracture in polycrystals implemented

with CASUP and with an MPI Fortran FE library ParaFEM,

http://parafem.org.uk, scaled to 8k cores on ARCHER (Cray XC30)

[6, 23, 24], Fig. 2.

Figure 1: Equiaxed microstructure with 106 grains (1011 CA

cells), from [23].

Figure 2: Fracture in a circular cylinder under uniaxial ten-

sion, from [23].

In this work the CASUP library has been completely re-designed

to achieve 2 objectives:

(1) All synchronisation is now completely hidden from the user.

CASUP automatically inserts the minimum required sync

https://cgpack.sourceforge.io
http://parafem.org.uk

Cellular automata beyond 100k cores: MPI vs Fortran coarrays EuroMPI ’18, September 23–26, 2018, Barcelona, Spain

CA iterations

(1) MPI IO, (2) NetCDF, (3) HDF5, etc.

(1) Ising magnetisation
(2) Solidification
(3) Fracture

(1) MPI or (2) coarrays

+ many other kernels

IO

HX

Collectives

(1) MPI or (2) coarrays

(1) triple nested loops

(3) OpenMP
(2) do concurrent

CA local loops

kernel

Figure 3: Modular structure of CASUP library.

calls to ensure data integrity. This removes the responsibil-

ity from the end user, who might be a domain scientist with

little knowledge of HPC, to maintain data integrity when

using CASUP routines. In practical terms this means there

no sync calls in CASUP miniapps.

(2) CASUP is now completely modular, i.e. the CA kernels, the

halo exchange or collective routines can be swapped with

ease, allowing performance analysis of multiple combina-

tions of Fortran coarray, MPI, OpenMP and do concurrent,

Fig. 3.

While reducing synchronisation requirements should lead to

better performance, the opposite is true for modularisation. Com-

pilers often cannot vectorise loops with subroutine of function

calls, even with inlining andwhole programoptimisation [13].How-

ever, this issue will affect both the MPI and the coarray versions of

CA, and hence is immaterial for performance comparisons of MPI

vs coarrays, which is the aim of this work.

4 HALO EXCHANGE (HX)

In this workwe use 3D domain decomposition of the CA space and

Von Neumann 6-neighbourhood.

While MPI calls can be used for sending any data between im-

ages/processes, in Fortran 2008 and 2018 only coarray data can be

used in remote calls. Therefore two possibilities for HX exist when

using coarrays: (1) creating the whole of the CA model of coarrays

(hereafter WCA), and (2) using coarrays only for CA halos (here-

after HCA). HX in HCA involves an extra step, copy of the bound-

ary CA data into coarray arrays on the same image, see Fig. 4.

For comparison, the key code fragments for HX, along spatial

dimension 1, are show below for HCA, WCA and MPI.

In HCA, space is a non-coarray array. Therefore the first step in

HX is to copy the halo cells from space to coarray arrays h1minu

and h1plus. This is a local operation:

if (ci(1) .ne. 1) h1minu(:,:,:) = &

space(1: hdepth , 1:sub(2), 1:sub(3))

if (ci(1) .ne. ucob (1)) h1plus(:,:,:) = &

space(ihsta(1): sub(1), 1:sub(2), 1:sub(3))

The second step is the actual HX:

if (ci(1) .ne. 1) then ! all but leftmost img

sync images(nei_img_L (1)) ! sync with left image

! HX , remote op

space(lhsta(1):0, 1:sub(2), 1: sub (3)) = &

h1plus(:,:,:) &

[nei_ci_L1 (1), nei_ci_L1 (2), nei_ci_L1 (3)]

ha
lo

co
ar

ra
y

ha
lo non−coarray CA ha
lo

ha
lo non−coarray CA ha
lo

ha
lo

ha
lo

ha
locoarray CA ha
lo

ha
locoarray CA

LOCAL

LOCAL REMOTE

REMOTE

REMOTE

REMOTE

process P process Q

(a)

(b)

co
ar

ra
y

ha
lo

co
ar

ra
y

ha
lo

co
ar

ra
y

Figure 4: Schematics of HX in 1D, showing (a) a one-step al-

gorithm (MPI and whole CA model (WCA) coarrays) and (b)

a two-step algorithm used when coarrays are used only for

CA halos (HCA). Local copy and remote comms are shown

with arrows.

end if

! all but the rightmost image

if (ci (1) .ne. ucob (1)) then

sync images(nei_img_R (1)) ! sync with right img

! HX , remote op

space(rhsta(1): rhend(1), 1:sub(2), 1:sub (3)) = &

h1minu(:,:,:) &

[nei_ci_R1 (1), nei_ci_R1 (2), nei_ci_R1 (3)]

end if

Note that Cray 8.6.5 compiler used a non-blocking libpgas rou-

tine for the above remote calls:

ftn-6077: An implicit non-blocking operation

was used for this statement.

In WCA, space is an array coarray and HX can be done in a

single statement:

if (ci (1) .ne. 1) then ! all but leftmost img

sync images(nei_img_L (1)) ! sync with left image

! HX , remote op

space(lhsta(1):0, 1:sub(2), 1:sub (3)) = &

space(ihsta(1): sub(1), 1: sub(2), 1:sub (3)) &

[nei_ci_L1 (1), nei_ci_L1 (2), nei_ci_L1 (3)]

end if

! all but the rightmost image

if (ci (1) .ne. ucob (1)) then

sync images(nei_img_R (1)) ! sync with right img

! HX , remote op

space(rhsta(1): rhend(1), 1:sub(2), 1:sub(3))= &

space(1:hdepth , 1: sub(2), 1:sub (3)) &

[nei_ci_R1 (1), nei_ci_R1 (2), nei_ci_R1 (3)]

end if

For extra flexibility, the CASUP library provides for multiple

kinds of MPI integers, matching the kind of CA data:

integer , parameter :: ca_range = 8

integer , parameter :: &

iarr = selected_int_kind (ca_range)

integer(kind =iarr), allocatable :: space(:,:,:)

call MPI_TYPE_CREATE_F90_INTEGER (ca_range , &

mpi_ca_integer , ierr)

EuroMPI ’18, September 23–26, 2018, Barcelona, Spain Anton Shterenlikht and Luis Cebamanos

MPI HX requires that derived types be created for halos first, e.g.

for the left halo along dimension 1, mpi_h1_LV.

call MPI_TYPE_CREATE_SUBARRAY (3, sizes , &

subsizes , starts , MPI_ORDER_FORTRAN , &

mpi_ca_integer , mpi_h1_LV , ierr)

Then point-to-point MPI calls are used for HX. Note that space

can be a coarray or a non-coarray array:

if (ci(1) .ne. 1) then

call MPI_IRECV (space ,1,mpi_h1_LV ,nei_img_L (1)-1,&

TAG1R , MPI_COMM_WORLD , reqs1m(1), ierr)

call MPI_ISEND (space ,1,mpi_h1_LR ,nei_img_L (1)-1,&

TAG1L , MPI_COMM_WORLD , reqs1m(2), ierr)

call MPI_WAITALL (2, reqs1m , stats , ierr)

end if

if (ci(1) .ne. ucob (1)) then

call MPI_IRECV (space ,1,mpi_h1_RV ,nei_img_R (1)-1,&

TAG1L , MPI_COMM_WORLD , reqs1p(1), ierr)

call MPI_ISEND (space ,1,mpi_h1_RR ,nei_img_R (1)-1,&

TAG1R , MPI_COMM_WORLD , reqs1p(2), ierr)

call MPI_WAITALL (2, reqs1p , stats , ierr)

end if

These code fragments clearly show that coarray remote comms

are single sided, i.e. no co-operationwith the remote image is needed.

This, and the fact that coarrays on Cray are implemented using

symmetric memory, leads to the expectation that coarray imple-

mentation should perform better than MPI. Moreover, we expect

that WCA should outperform HCA, because it avoids the extra lo-

cal copy step. However, the scaling results show otherwise (see Sec.

7).

5 CA ITERATIONS

At the heart of any CA are loops over all cells with some kernel. CA-

SUP provides routines with simple triple nested loops, with nested

loops wrapped into OpenMP and do concurrent, which is a For-

tran 2008 do loop designed for loops where the order of loop it-

erations does not affect the results. The idea is that a good opti-

mising compiler can exploit this information for some sort of auto-

threading of do concurrent loops, perhaps again via OpenMP.

The OpenMP version looks like this:

!$omp parallel do default(none) &

!$omp private(i, j, k) &

!$omp shared(sub , space , hdepth , tmp_space)

do k = 1, sub(3)

do j = 1, sub(2)

do i = 1, sub(1)

tmp_space (i,j,k) = &

kernel(space , hdepth , (/ i , j , k /))

end do

end do

end do

!$omp end parallel do

from which the simple triple nested loop can be obtained by com-

piling with no OpenMP or by removing the $omp tokens.

The do concurrent version looks like this:

do concurrent (k=1: sub(3),j=1: sub(2), i=1:sub (1))

tmp_space (i,j,k) = &

kernel(space , hdepth , (/ i , j , k /))

end do

Unfortunately, Cray 8.6.5 Fortran compiler was unable to ex-

ploit the do concurrent parallelism: The compiler diagnostic for

this is not specific:

ftn-6910: A loop was not multi-threaded

for an unspecified reason.

It is well known that it is typically impossible to vectorise loops

with function/subroutine calls [13]. Therefore it is not surprising

that the compiler was not able to vectorise any of the loops:

ftn-6287: A loop was not vectorized because

it contains a call to function "kernel".

6 3D ISING MAGNETISATION

We study the performance of CASUP via miniapps made with the

3D Ising magnetisation kernel.

A 3D extension of the Q2R Vichniac’s 2D rule for Ising magneti-

sation [7] was implemented in this work. Each CA cell represents

a single magnetic spin, which can take one of two values: 0 (down)

or 1 (up). Energy conservation requires that CA cells are split into 2

groups according to a 3D chess-like pattern, with either all ‘white’

or all ‘black’ cells updated in a single CA iteration. This is an exten-

sion of the 2D chess-like pattern [7], achieved using a mask array:

ci = this_image (halo_array)

c = ucobound(space) - halo_depth

do concurrent (i=1:c(1), j=1:c(2), k=1:c(3))

mask_array (i,j,k)=mod((i+j+k + (ci(1)-1)* c(1)+ &

(ci(2)-1)* c(2) + (ci (3)-1)* c(3)) , 2)

end do

The energy of a CA cell is defined in the following way. Every

neighbour of the same spin as the central cell adds −1 to its energy,

and every neighbour of the opposite spin adds +1 to its energy.

Energy conservation means that a spin will flip (change sign) only

if this does not change its energy, i.e. it has 3 neighbours with spin

0 and 3 neighbours with spin 1:

! sum of the spins of the 6 neighbours

n = s(i-1,j,k) + s(i+1,j,k) + s(i,j-1,k) + &

s(i,j+1,k) + s(i,j,k-1) + s(i,j,k+1)

if (n.eq.3 .and. mask_array (i,j,k).eq.1) then

! If the sum of 6 neighbours is exactly 3

! and the mask value is 1 then flip the state.

ca_kernel_ising = 1 - s(i,j,k)

else

ca_kernel_ising = s(i,j,k) ! Otherwise no change

end if

Finally, a two-stepCA iteration, with energy conservation, looks

as follows, where hx_sub is the desired HX routine, with necessary

data synchronisation, and iter_sub is the desired kernel routine:

tmp_space = space

do i = 1, 2*niter

call hx_sub(space) ! HX , space updated

! tmp_space updated , local op

call iter_sub(space , hdepth , kernel)

space = tmp_space ! Local op

mask_array = 1 - mask_array ! Flip the mask array

Cellular automata beyond 100k cores: MPI vs Fortran coarrays EuroMPI ’18, September 23–26, 2018, Barcelona, Spain

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1 10 100 1000 10000 100000

M
a
g
n
e
ti
s
a
ti
o
n
,
%

 o
f
u
p
 s

p
in

s

CA iterations

CA magnetisation evolution from different
 starting fractions of ’up’ spins

89%
75%
54%
46%
25%
11%

Figure 5: CASUP magnetisation evolution in the 2.7 × 1010

cell CA model.

end do

To verify that the energy is conserved in the model, it was calcu-

lated every CA iteration. Whole model magnetisation is the main

model output. Accordingly it was also calculated every iteration.

Collectives are used in both cases, either coarray co_sum or

MPI_ALLREDUCE with MPI_SUM, after the local sumswere calculated

on each image.

7 RESULTS

7.1 Physics

Although the focus of this work is the performance comparisons

between coarray andMPIminiapps at scale, it is important to show

that 3D Ising magnetisation results achieved with CASUP are phys-

ically sound.

Fig. 5 shows magnetisation evolution for different starting val-

ues. The model shows existence of several stationary magnetisa-

tion states - around 50%, 40%, 11% and 13% of up spins. The 40%

stationary state is consistent with existing literature [7], and the

50% stationary state (no overall magnetisation) is an obvious re-

sult, the other 2 stationary states, 11% and 13% of up spins, are un-

expected and deserve a further investigation, particularly because

these are very close together, but seem to be two distinct states. It

is also worth investigating why the 75% and the 90% models con-

tinue to evolve beyond the first (or the first 2) stationary states. It

is important to rule out any modelling artifacts before presenting

these as true physical results.

Fig. 6 shows the starting and the final states of the CA model

for the 90% initial fraction of up spins. Cell states are distributed

at random at the start, with no particular spatial pattern. It is in-

teresting to note that the final state likewise does not show any

particular spatial arrangement or the up and down spin islands.

Figure 6: CA with 90% of up spins (left) evolves to 13% of

‘up’ spins in ∼100k iterations (right). Up spin cells are black.

Down spin cells are white.

Figure 7: Details of Cray software stack, from [10].

7.2 HPC

All performance studies were done on ARCHER, the UK national

HPC system, Cray XC30 with 2×12-core Ivy Bridge CPUs per node.

All jobs were submitted with aprun as:

aprun -n $NP -ss -N $PN -S $PU -d $NT -T $EXE

where NP = PN× number of nodes; PU × NT = 12, to ensure there

was always just one thread of execution per physical core, and -ss

specifies ‘strict memory containment per NUMA node’, to ensure

no process/thread allocates memory off local NUMA region.

It is important to consider the software stack on Cray, see Fig.

7. Cray provides two different hardware dependent libraries: nGNI

(Generic Network Interface) andDMAPP (Distributed SharedMem-

ory Application). Hardware independent portable communication

EuroMPI ’18, September 23–26, 2018, Barcelona, Spain Anton Shterenlikht and Luis Cebamanos

 0.1

 1

 10

 100

 1000

 10
 100

 1000

 2000

 3000

 4000

4544

4544 nodes is the machine capacity

T
im

e
,

s

nodes

ARCHER, Cray XC30, 2x12-core CPUs per node

Coarrays HX, 8bn cells
MPI HX, 8bn cells

Coarrays HX, 27bn cells
MPI HX, 27bn cells

ideal

Figure 8: Scaling of a 3D Ising magnetisation miniapp with

a cubic CA space.

libraries are layered on top of these, specifically the MPI library

(MPICH2) sits on top of uGNI, and the PGAS library sits on top

of DMAPP. Fortran 2008 coarray miniapps are compiled with a

PGAS Cray compiler (default option -h pgas_runtime) and linked

against libpgas. The key observation, relevant for the understand-

ing of the MPI and coarray CA performance, is that coarray and

MPI miniapps use different hardware-specific libraries.

Fig. 8 shows that contrary to our expectations, MPI miniapps

scale better than coarrays. Indeed, for a sufficiently large model,

with 2.7×1010 cells, theMPIminiapp scaling limit is at least as high

as the full ARCHER capacity, 4,544 nodes. In contrast the coarray

miniapp scaling limit is only about 3,000 nodes or even 2,000 nodes

for a smaller model with 8 × 109 cells. Moreover, while parallel

efficiency with MPI miniapps is about 60%, it is only about 30% in

coarray miniapps.

A 2015 study [9] showed that coarrays slightly outperformed

single sided comms of MPI-3 for several PDE problems, (including

multigrids, which are reasonably similar to CA, so a comparison

is meaningful) at least up to 8k cores on Cray XC30 and up to 65k

cores on Cray XK. Our finding that MPI-2 outperformed coarrays,

also on Cray XC30, is therefore surprising.

Fig. 9 shows that, contrary to our expectations, WCA miniapps

performed significantly worse than HCA, with the parallel effi-

ciency of only about 10%.

Finally, Fig. 10 shows that any amount of threading dramatically

reduces performance. Note that the do concurrent results match

exactly with the triple nested loops, because the compiler was un-

able to auto-thread do concurrent loops, as explained in Sec. 5.

Also note that all 6 combinations of the number of threads per

process and process per core result in a single tread per core. For

example, the data points for ‘3/4’ in Fig. 10 show performance with

4 processes per NUMA region and with 3 threads per process, i.e.

 1

 10

 100

 1000

 10 100 1000 2000

T
im

e
,
s

nodes

ARCHER, Cray XC30, 2x12-core CPUs per node

Separate halo coarrays
Whole model coarrays

ideal

Figure 9: Scaling of a 3D Ising magnetisation coarray mini-

apps with 8 × 109 cells.

 10

 100

 1000

 10000

1/12 2/6 3/4 4/3 6/2 12/1

T
im

e
,
s

Threads per process/Processes per NUMA

ARCHER, Cray XC30, 100 nodes, 2 NUMA regions / node

Coarrays triple loop
Coarrays do concurrent
Coarrays OpenMP

MPI triple loop
MPI do concurrent
MPI OpenMP

Figure 10: The influence of threading on performance for

MPI and coarray 3D Ising magnetisation CA miniapps.

with 12 total threads per 12-coreNUMA region. Allmemorywas al-

located outside OpenMP parallel regions, i.e. by the master thread.

However, this could not have caused ‘NUMA effects’, because there

was always at least 1 image per NUMA. This and the use of aprun

option -ss (‘strict memory containment per NUMA’) ensured that

all threads touch only the memory in the local NUMA region.

Although in all cases of using underpopulated nodes OpenMP

shows best performance, this is still significantly worse than using

Cellular automata beyond 100k cores: MPI vs Fortran coarrays EuroMPI ’18, September 23–26, 2018, Barcelona, Spain

100 nodes

Group HCA WCA MPI

Triple loop + Ising kernel, % 19.3 17.9 27.9

Ising energy + collectives, % 29.6 33.6 21.2

HX, % 28.3 29.1 17.0

Total, % 77.2 80.6 66.1

Total time, s 191 210 120

1000 nodes

Group HCA WCA MPI

Triple loop + Ising kernel, % 4.6 3.2 5.0

Ising energy + collectives, % 27.1 26.2 22.2

HX, % 25.0 23.3 16.2

Total, % 56.7 52.7 43.4

Total time, s 59 82 44

Table 1: Relative times spent in different parts of 3D Ising

magnetisationminiapps on 100 and on 1000 nodes. The total

run times are also shown.

fully populated nodes and no threading. The most likely explana-

tion for this is that the miniapps are well balanced because the

same kernel is called for all CA cells and the same number of cells

are processed by each image. It is known that addition of OpenMP

toMPI is typically helpful only when applications show significant

load imbalance [4]. We expect this to be true also for coarrays.

In addition the miniapps are likely to be memory and (at scale)

network bound, rather than compute bound. Sec. 8 will show that

there is a significant imbalance in comms. Since OpenMP adds

overheads and potentially suffers from ‘false sharing’, a reduction

in performance when adding OpenMP is not that surprising. A re-

cent survey concluded that ‘performance of all-MPI (no threading)

on the Xeon and now even the KNL has been surprisingly good,

and the need for adding threading on those systems has become

less urgent’ [13].

8 PROFILING

8.1 Non-threaded miniapps

CrayPat (Cray PerformanceMeasurement andAnalysis Tools) 6.4.6

was used in this work. We started with an automatic profiling of

non-threaded miniapps, with CrayPat default settings, on 100 and

1000 nodes. The summary is shown in Tab. 1

It is clear that relatively more time is spent for remote comms

(HX) and on collectives in coarrayminiapps compared toMPImini-

apps. Accordingly, coarray miniapps spent relatively less time cal-

culating inside the triple loop thanMPI. The data also confirms that

WCA coarray approach results in less time spent computing and

more time in remote comms and collectives that HCA, although

the difference is small. On 1000 nodes the relative time spent by

WCA on remote operations is actually lower than by HCA, how-

ever overall WCA spent less time than HCA in the user code. Fi-

nally, as expected, the overheads increase significantly from 100

to 1000 nodes, which is shown by a significant reduction of time

spent in user code (Total, %). Overall this data just confirms what

was seen already in the scaling results and does not provide any

extra insight.

Samp% | Samp | Imb. | Imb. | Group

| | Samp | Samp% | Function

|--

| 77.7% | 18,256.5 | -- | -- | USER

||---

|| 28.3% | 6,650.9 | 4,960.1 | 42.7% | ca_hx_all$ca_hx_

|| 21.8% | 5,119.2 | 5,456.8 | 51.6% | ca_ising_energy_col$ca_hx_

|| 10.7% | 2,519.5 | 144.5 | 5.4% | ca_kernel_ising$ca_hx_

|| 8.6% | 2,011.1 | 138.9 | 6.5% | ca_iter_tl$ca_hx_

|| 7.8% | 1,829.4 | 122.6 | 6.3% | ca_kernel_ising_ener$ca_hx_

Figure 11: HCA user functions on 100 nodes.

Samp% | Samp | Imb. | Imb. | Group

| | Samp | Samp% | Function

|---

| 80.8% | 20,428.1 | -- | -- | USER

||--

|| 29.1% | 7,353.7 | 5,991.3 | 44.9% | ca_co_hx_all$ca_hx_

|| 24.7% | 6,245.7 | 6,590.3 | 51.4% | ca_co_ising_energy$ca_hx_

|| 9.9% | 2,510.6 | 131.4 | 5.0% | ca_kernel_ising$ca_hx_

|| 8.0% | 2,029.1 | 133.9 | 6.2% | ca_iter_tl$ca_hx_

|| 7.2% | 1,821.4 | 140.6 | 7.2% | ca_kernel_ising_ener$ca_hx_

|| 1.7% | 437.3 | 40.7 | 8.5% | ca_co_run$ca_hx_

Figure 12: WCA user functions on 100 nodes.

Samp% | Samp | Imb. | Imb. | Group

| | Samp | Samp% | Function

|--

| 40.5% | 6,574.7 | -- | -- | USER

||---

|| 15.4% | 2,501.5 | 152.5 | 5.7% | ca_kernel_ising$ca_hx_

|| 12.5% | 2,024.0 | 139.0 | 6.4% | ca_iter_tl$ca_hx_

|| 11.4% | 1,845.5 | 104.5 | 5.4% | ca_kernel_ising_ener$ca_hx_

||===

| 27.3% | 4,425.4 | -- | -- | MPI

||---

|| 14.9% | 2,419.9 | 1,589.1 | 39.7% | mpi_waitall

|| 9.8% | 1,592.8 | 1,832.2 | 53.5% | MPI_ALLREDUCE

|| 2.1% | 347.3 | 119.7 | 25.6% | mpi_isend

Figure 13: MPI miniapp functions on 100 nodes.

A detailed load balancing data for the 3 miniapps is shown in

Figs. 11-13 for 100 nodes and in Figs. 14-16 for 1000 nodes.

Figs. 11-13 show very little load imbalance (Imb. Samp% column)

in all 3 miniapps in computation (kernels ca_kernel_ising and

ca_kernel_ising_energy, and the triple loop ca_iter_tl) but

a significant imbalance in comms. Note that in coarray miniapps

(both HCA and WCA) comms are hidden inside the user functions,

when sampling with the default CrayPat options. The HX func-

tions ca_hx_all (HCA) and ca_co_hx_all (WCA) include coar-

ray remote reads, and the energy calculation functions

ca_ising_energy_col (HCA) and ca_co_ising_energy (WCA)

include coarray collectives, as explained in Sec. 4.

Figs. 14-16 show a higher imbalance in computation, although

these now account for only 5-7% of the total time. However, the

imbalance in the comms is still about 50%, as at 100 nodes.

In an attempt to separate user functions from coarray commswe

tried to instrument theHCAminiappwith pat_build -g caf,pgas

option, which traces PGAS library calls separately from coarray

user functions. Unfortunately this dramatically increased the over-

heads, to the extent that runtime grew by 7 times and relative tim-

ings were very different from the first sampling run. In fact, only

EuroMPI ’18, September 23–26, 2018, Barcelona, Spain Anton Shterenlikht and Luis Cebamanos

Samp% | Samp | Imb. | Imb. | Group

| | Samp | Samp% | Function

|---

| 56.8% | 5,693.3 | -- | -- | USER

||--

|| 25.3% | 2,533.7 | 2,581.3 | 50.5% | ca_ising_energy_col$ca_hx_

|| 25.0% | 2,504.0 | 2,419.0 | 49.1% | ca_hx_all$ca_hx_

|| 2.6% | 259.9 | 66.1 | 20.3% | ca_kernel_ising$ca_hx_

|| 2.0% | 200.5 | 62.5 | 23.8% | ca_iter_tl$ca_hx_

|| 1.8% | 183.9 | 50.1 | 21.4% | ca_kernel_ising_ener$ca_hx_

Figure 14: HCA user functions on 1000 nodes.

Samp% | Samp | Imb. | Imb. | Group

| | Samp | Samp% | Function

|--

| 53.1% | 7,610.0 | -- | -- | USER

||---

|| 24.9% | 3,569.5 | 3,715.5 | 51.0% | ca_co_ising_energy$ca_hx_

|| 23.3% | 3,346.3 | 3,210.7 | 49.0% | ca_co_hx_all$ca_hx_

|| 1.8% | 261.2 | 106.8 | 29.0% | ca_kernel_ising$ca_hx_

|| 1.4% | 205.9 | 80.1 | 28.0% | ca_iter_tl$ca_hx_

|| 1.3% | 187.1 | 71.9 | 27.8% | ca_kernel_ising_ener$ca_hx_

Figure 15: WCA user functions on 1000 nodes.

Samp% | Samp | Imb. | Imb. | Group

| | Samp | Samp% | Function

||===

| 37.4% | 3,436.1 | -- | -- | MPI

||---

|| 20.2% | 1,858.8 | 1,633.2 | 46.8% | MPI_ALLREDUCE

|| 16.5% | 1,516.0 | 1,604.0 | 51.4% | mpi_waitall

||===

| 7.1% | 653.3 | -- | -- | USER

||---

|| 2.8% | 254.4 | 45.6 | 15.2% | ca_kernel_ising$ca_hx_

|| 2.2% | 198.3 | 54.7 | 21.6% | ca_iter_tl$ca_hx_

|| 2.0% | 181.5 | 32.5 | 15.2% | ca_kernel_ising_ener$ca_hx_

Figure 16: MPI miniapp functions on 1000 nodes.

Time% | Time | Imb. | Imb. | Calls | Group

| | Time | Time% | | Function

|---

| 44.4% | 671.8 | -- | -- | 34M | PGAS

||--

||42.6% | 645.1 | 755.4 | 54.0% | 1,679.1 | __pgas_sync_with_image

|| 1.6% | 24.8 | 137.7 | 84.7% | 34M | __pgas_umove_nbi

||==

| 36.9% | 559.3 | 654.1 | 53.9% | 206.0 | CAF

||--

||36.9% | 559.3 | 654.1 | 53.9% | 206.0 | __caf_cosum

||==

| 16.2% | 244.7 | -- | -- | 411.0 | USER

Figure 17: HCA miniapp functions on 100 nodes from

pat_build -O caf,pgas tracing.

16% was spent in user routines, see Fig. 17, down from 77% with

default CrayPat sampling settings. Note that CrayPat puts coarray

collective co_sum in a different group from PGAS, which is surpris-

ing. While pgas_umove_nbi shows a significant load imbalance,

the total time spent there is negligible. Overall, this data again does

not shed any light on relatively poor performance of coarrays com-

pared to MPI.

Samp% | Samp | Imb. | Imb. | Group

| | Samp | Samp% | Function

|--

| 81.1% | 38,725 | -- | -- | USER

||---

|| 55.3% | 26,397 | 7,348.7 | 21.8% | ca_hx_all$ca_hx_

|| 12.0% | 5,744 | 9,613.7 | 62.7% | ca_ising_energy_col$ca_hx_

|| 4.9% | 2,359 | 100.3 | 4.1% | ca_kernel_ising$ca_hx_

|| 4.0% | 1,902 | 113.5 | 5.6% | ca_iter_omp$ca_hx_.LOOP@li.1130

|| 3.9% | 1,874 | 72.3 | 3.7% | ca_kernel_ising_ener$ca_hx_

||===

| 6.0% | 2,885 | -- | -- | OMP

Figure 18: HCA miniapp with OpenMP on 100 nodes with 4

threads per process, 3 processes per NUMA.

We can only speculate that source of the performance differ-

ences between the MPI the coarray comms lie lower down in the

Cray software stack, either in the comms libraries (MPICH2 vs libp-

gas) or even lower, in the hardware libraries (uGNI vs DMAPP).

8.2 Threaded miniapps

Fig. 10 shows very similar trends for all miniapps. Therefore effects

of threading were analysed via CrayPat sampling only on the HCA

miniapp. Results on 100 nodes in Fig. 18 must be compared against

those in Fig. 11. In addition Running with 4 threads per process re-

sulted in ×2 increase in HX time, from 28% to 55%, and ×2 decrease

in compute time, from 27% to 13%. In addition OpenMP overheads

account for 6% of total time.

Importantly, the L2 cache utilisation is worsewithOpenMPmini-

apps than in pure coarray or MPI miniapps. Without OpenMP it is

about 75% in HCA, WCA and MPI miniapps:

D2 cache hit,miss ratio 76.0% hits 24.0% misses

With 4 OpenMP threads per process the hit rate drops to 65%:

D2 cache hit,miss ratio 65.4% hits 34.6% misses

although both values are quite low. As explained in Sec. 5, this is

a direct consequence of the fact that CASUP is a modular library,

with a subroutine call inside the main loops, which prohibits vec-

torisation.

9 COARRAYS VS MPI COMMUNICATIONS

In an attempt to understand better the difference in coarrays vs

MPI communications, we did simple ‘ping-pong’ measurements of

latency and bandwidth for both. We used the EPCC Fortran Coar-

ray micro-benchmark suite [2]. As Figs. 19 and 20 show, the re-

sults are very similar, which does not explain the difference seen

in CA miniapps. These figures show the time taken for messages

up to 1MB using get with coarrays, and using mpi_Isend with

MPI for comparison. To ensure that the Cray Aries network is used

rather than shared-memory copies, the tests were done using two

images (orMPI processes) placed on different compute nodes of the

XC30 system. The results shown in Fig. 19 demonstrate that MPI

has lower latency for messages up to 1kB. The reason for this is

that the coarray time is dominated by synchronization calls (sync

all). Above 1kB, MPI and coarray show very similar performance.

Similar situation can be seen in Fig.20 with regards to the band-

width, MPI bandwidth is about 2× higher than coarray bandwidth

for small messages up to 1kB and very similar rate above 1kB.

Cellular automata beyond 100k cores: MPI vs Fortran coarrays EuroMPI ’18, September 23–26, 2018, Barcelona, Spain

10
-6

10
-5

10
-4

10
-3

10
-2

 1 10
 100

 1000

 10000

 100000

 1x10 6

L
a

te
n

c
y
,

s

Message size, bytes

ARCHER, Cray XC30

Coarrays
MPI

Figure 19: Coarrays vs MPI latency.

10
0

10
1

10
2

10
3

10
4

 1 10
 100

 1000

 10000

 100000

 1x10 6

B
a

n
d

w
id

th
,

M
B

/s

Message size, bytes

ARCHER, Cray XC30

Coarrays
MPI

Figure 20: Coarrays vs MPI bandwidth.

Figs. 21-22 show timing for only the HX step, where each point

is a maximum time, across all processes, of 10 HX calls. Fig. 21

shows that not only MPI is faster by a factor of 4-5, but also that

WCA becomes beneficial only for halo sizes > 200kB on 6 nodes.

At scale, when the halos are 100kB or smaller, Fig. 22 shows that

MPI is 6-8 times faster, and, as expected, a higher number of nodes

results in a longer run times, for the same halo size.

10 FUTURE

It might be beneficial to change CA domain decomposition from

a 3D grid to a 1D linear array. A 1D decomposition reduces the

number of messages by a factor of 3, but the messages are much

bigger (very roughly by a factor n2/3, assuming that a cubic CA

model is decomposed into n identical cubes on n images), see Fig.

23. In addition, the amount of memory required for halo cells in 1D

 0

 1

 2

 3

 4

 5

 6

 0 50
 100

 150
 200

 250
 300

 350
 400

 450
 500

T
im

e
,

s

Halo size, kB

ARCHER, Cray XC30

HCA
WCA
MPI

Figure 21: HX timing on 6 nodes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 20
 40

 60
 80

 100
 120

 140

T
im

e
,

s

Halo size, kB

ARCHER, Cray XC30

42 nodes HCA
 WCA
 MPI

334 nodes HCA
 WCA
 MPI

Figure 22: HX timing on 42 and 334 nodes.

decomposition is higher than in 3D. Finally, a 1D decomposition

might not be possible at all at scale, if the longest dimension of

the CA model has fewer cells than the number of images. A 2D

decomposition might be a useful compromise.

Fortran 2018 standard, expected to be published in 2018, will

add events and a richer set of atomics to the language. These might

be used to implement an asynchronous HX, similar to [3], which

should help balance the comms load.

11 CONCLUSIONS

CASUP library proved useful for studying performance ofMPI and

coarray CA miniapps with optional OpenMP threading. Contrary

to our expectations, and to previously publishedmeasurements [9],

EuroMPI ’18, September 23–26, 2018, Barcelona, Spain Anton Shterenlikht and Luis Cebamanos

4
2

3

24 slices

(a) (b)

Figure 23: Schematic of a 1D (left) and a 3D (right) domain

decomposition of CA on 24 images.

the results show clearly that single sided Fortran coarray commu-

nications perform worse than MPI-2 non-blocking ISEND/IRECV

for a regular grid halo exchange in 3D CA simulations on Cray

XC30. This is true from small scale (6 nodes) to the full machine

capacity (4544 nodes). Sampling of complete CA miniapps shows

that although computations are well balanced, there is significant

imbalance in communications, but the level of imbalance is similar

with MPI and with coarrays. Moreover, although a simple ‘ping-

pong’ benchmark shows very similar bandwidth and latency char-

acteristics for MPI and coarrays, timing of the halo exchange step

shows that MPI is faster than coarrays by a factor of 4-8. These in-

conclusive results point to different levels of optimisation in MPI

and PGAS libraries, or the hardware specific libraries uGNI (for

MPI) and DMAPP (for coarrays). One possible explanation is that

coarrays are still new and received little use. This is likely reflected

in the amount of effort spent by vendors such as Cray on coarray

optimisation. Wider adoption of coarrays in HPC will likely im-

prove vendor support and therefore performance. Adding OpenMP

toMPI or to coarrayswas found to lower performance significantly

in all cases, because the computation in CA miniapps is well bal-

anced and the CA algorithm is memory and network bound. Al-

though this study focused on strong scaling, CASUP is equallywell

suited for the study of node-level performance, i.e. loop optimisa-

tion for efficient cache usage.

ACKNOWLEDGMENTS

This work was supported by EPSRC grant EP/R013047/1 and used

the ARCHER UK National Supercomputing Service

(http://www.archer.ac.uk), project e560.

REFERENCES
[1] G. A. Albertao, R. Eschard, T. Mulder, V. Teles, B. Chauveau, and P. Joseph. 2015.

Modeling the deposition of turbidite systems with Cellular Automata numerical
simulations: A case study in the Brazilian offshore. Marine Petrol. Geol. 59 (2015),
166–186. https://doi.org/10.1016/j.marpetgeo.2014.07.010

[2] I. Bethune, J. M. Bull, N. J. Dingle, and N. J. Higham. 2012. A Paral-
lel Benchmark Suite for Fortran Coarrays. Applications, Tools and Tech-
niques on the Road to Exascale Computing, IOS Press 22 (2012), 281 – 288.
https://doi.org/10.3233/978-1-61499-041-3-281

[3] I. Bethune, J. M. Bull, N. J. Dingle, and N. J. Higham. 2014. Performance analysis
of asynchronous Jacobi’s method implemented in MPI, SHMEM and OpenMP.
Int. J. HPC Appl. 28 (2014), 97–111. https://doi.org/10.1177/1094342013493123

[4] J. M. Bull, J. Enright, Xu Guo, C. Maynard, and F. Reid. 2010. Per-
formance evaluation of mixed-mode OpenMP/MPI implementations.
International Jounnal of Parallel Programming 38 (2010), 396–417.
https://doi.org/10.1007/s10766-010-0137-2

[5] A.W. Burks (Ed.). 1970. Essays on Cellular Automata. University of Illinois Press.

[6] L. Cebamanos, A. Shterenlikht, D. Arregui-Mena, and L.
Margetts. 2016. Scaling hybid coarray/MPI miniapps on
Archer. In Cray User Group 2016 meeting (CUG2016), London.
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap120s2-file1.pdf.

[7] B. Chopard and M. Droz. 1998. Cellular Automata Modelling of Physical Systems.
Cambridge.

[8] S. Das, A. Shterenlikht, I. C. Howard, and E. J. Palmiere. 2006. A general method
for coupling microstructural response with structural performance. Proc. Roy.
Soc. A 462 (2006), 2085–2096. https://doi.org/10.1098/rspa.2006.1681

[9] S. Garain, D. S Balsara, and J. Reid. 2015. Comparing Coarray Fortran (CAF) with
MPI for several structured mesh PDE applications. J. Comp. Phys. 297 (2015),
237–253. https://doi.org/10.1016/j.jcp.2015.05.020

[10] Cray Inc. 2018. XC Series GNI and DMAPP API User Guide (CLE 6.0.UP06) S-2446.
[11] ISO/IEC 1539-1. 2010. Fortran – Part 1: Base language, International Standard.
[12] B. Jelinek, M. Eshraghi, C. Felicelli, and J. F. Peters. 2014. Large-

scale parallel lattice Boltzmann-cellular automaton model of two-
dimensional dendritic growth. Comp. Phys. Comms 185 (2014), 939–947.
https://doi.org/10.1016/j.cpc.2013.09.013

[13] J. Levesque and A. Vose. 2018. Programming for Hybrid Multi/Manycore MPP
Systems. CRC Press.

[14] E. N.Millan, C. S. Bederian,M. F. Piccoli, C. G. Garino, and E.M. Bringa. 2015. Per-
formance analysis of Cellular Automata HPC implementations. Computers Electr.
Engng 48 (2015), 12–24. https://doi.org/10.1016/j.compeleceng.2015.09.015

[15] G. Mozdzynski, M. Hamrud, and N. Wedi. 2015. A Partitioned Global Address
Space implementation of the European Centre for Medium Range Weather Fore-
casts Integrated Forecasting System. Int. J. High Perf. Comp. Appl. 29 (2015),
261–273. https://doi.org/10.1177/1094342015576773

[16] B. Pfeifer, K. Kugler, M. M. Tejada, C. Baumgartner, M. Seger, M. Osl, M. Netzer,
M. Handler, A. Dander, M. Wurz, A. Graber, and B. Tilg. 2008. A cellular automa-
ton framework for infectious disease spread simulation. Open Med. Inform. J. 2
(2008), 70–81. https://doi.org/10.2174/1874431100802010070

[17] T. Pohl, F. Deserno, N. Thurey, U. Rude, P. Lammers, G. Wellein, and
T. Zeiser. 2004. Performance evaluation of parallel large-scale lattice
Boltzmann applications on three supercomputing architectures. In SC2004.
http://supercomputing.org/sc2004/schedule/pdfs/pap173.pdf.

[18] R. Preissl, N. Wichmann, B. Long, J. Shalf, S. Ethier, and A. Koniges.
2011. Multithreaded Address Space Communication Techniques for Gy-
rokinetic Fusion Applications on Ultra-Scale Platforms. In SC11, USA.
http://upc.lbl.gov/publications/Preissl_SC2011.pdf.

[19] L. Rauch, L. Madej, P. Spytkowski, and R. Golab. 2015. Development
of the cellular automata framework dedicated for metallic materials micro-
structure evolution models. Arch. Civil Mech. Eng. 15 (2015), 48–61.
https://doi.org/10.1016/j.acme.2014.06.006

[20] X. P. Rui, S. Hui, X. T. Yu, G. Y. Zhang, and B. Wu. 2018. Forest fire spread
simulation algorithm based on cellular automata. Natural Hazards 91 (2018),
309–319. https://doi.org/10.1007/s11069-017-3127-5

[21] A. Shterenlikht. 2013. Fortran coarray library for 3D cellular automata micro-
structure simulation. In 7th International Conference on PGAS ProgrammingMod-
els. Edinburgh, Scotland, UK, ISBN 978-0-9926615-0-2.

[22] A. Shterenlikht and L. Margetts. 2015. Three-dimensional cellular au-
tomata modelling of cleavage propagation across crystal boundaries in
polycrystalline microstructures. Proc. Roy. Soc. A 471 (2015), 20150039.
https://doi.org/10.1098/rspa.2015.0039

[23] A. Shterenlikht, L. Margetts, and L. Cebamanos. 2017. Fortran coarray/MPI
Multi-Scale CAFE for Fracture in Heterogeneous Materials. In Fifth International
Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering.
Civil-Comp Press, Stirlingshire, UK. https://doi.org/10.4203/ccp.111.40

[24] A. Shterenlikht, L. Margetts, L. Cebamanos, and J.D. Arregui-Mena. 2016. Multi-
scale CAFE framework for simulating fracture in heterogeneous materials im-
plemented in Fortran coarrays and MPI. In PGAS Application Workshop (PAW),
held in conjunction with SC16. https://doi.org/10.1109/PAW.2016.006

[25] A. Shterenlikht, L. Margetts, L. Cebamanos, and D. Henty. 2015. For-
tran 2008 coarrays. ACM SIGPLAN Fortran Forum 34 (2015), 10–30.
https://doi.org/10.1145/2754942.2754944

[26] G. Vahala, L. Vahala, and M. Soe. 2013. Lattice Boltzmann algorithms
for plasma physics. Radiation Effects Defects Solids 168 (2013), 735–758.
https://doi.org/10.1080/10420150.2013.831856

[27] A. Yoshimoto, P. Asante, M. Konoshima, and P. Surovy. 2017. In-
nteger programming approach to control invasive species spread based
on cellular automaton model. Natural Resource Model. 30 (2017), 1–42.
https://doi.org/10.1111/nrm.12101

[28] C. W. Zheng and D. Raabe. 2013. Interaction between recrystallization
and phase transformation during intercritical annealing in a cold-rolled dual-
phase steel: A cellular automaton model. Acta Mat. 61 (2013), 5504–5517.
https://doi.org/10.1016/j.actamat.2013.05.040

[29] Y. H. Zhuang, W. Y. Li, H. H. Wang, S. Hong, and H. J. Wang. 2017. A Bib-
liographic Review of Cellular Automaton Publications in the Last 50 Years. J
Cellular Automata 12 (2017), 475–492.

http://www.archer.ac.uk
https://doi.org/10.1016/j.marpetgeo.2014.07.010
https://doi.org/10.3233/978-1-61499-041-3-281
https://doi.org/10.1177/1094342013493123
https://doi.org/10.1007/s10766-010-0137-2
https://cug.org/proceedings/cug2016_proceedings/includes/files/pap120s2-file1.pdf
https://doi.org/10.1098/rspa.2006.1681
https://doi.org/10.1016/j.jcp.2015.05.020
https://doi.org/10.1016/j.cpc.2013.09.013
https://doi.org/10.1016/j.compeleceng.2015.09.015
https://doi.org/10.1177/1094342015576773
https://doi.org/10.2174/1874431100802010070
http://supercomputing.org/sc2004/schedule/pdfs/pap173.pdf
http://upc.lbl.gov/publications/Preissl_SC2011.pdf
https://doi.org/10.1016/j.acme.2014.06.006
https://doi.org/10.1007/s11069-017-3127-5
https://doi.org/10.1098/rspa.2015.0039
https://doi.org/10.4203/ccp.111.40
https://doi.org/10.1109/PAW.2016.006
https://doi.org/10.1145/2754942.2754944
https://doi.org/10.1080/10420150.2013.831856
https://doi.org/10.1111/nrm.12101
https://doi.org/10.1016/j.actamat.2013.05.040

	Abstract
	1 Introduction
	2 Fortran coarrays
	3 CASUP library for CA on HPC
	4 Halo exchange (HX)
	5 CA iterations
	6 3D Ising magnetisation
	7 Results
	7.1 Physics
	7.2 HPC

	8 Profiling
	8.1 Non-threaded miniapps
	8.2 Threaded miniapps

	9 Coarrays vs MPI communications
	10 Future
	11 Conclusions
	References

