
CGPACK-PARAFEM performance assessment report

Document Information
Reference Number POP AR 82, Version 1.0
Author José Gracia (HLRS)
Contributor(s)
Date December 6, 2017
Application CGPACK-PARAFEM
Service Level Performance Audit
Keywords CGPACK, PARAFEM, MPI, Coarray Fortran

Notices: The research leading to these results has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No no676553.

c©2015 POP Consortium Partners. All rights reserved.

POP Ref.No. POP AR 82 CONTENTS

Contents

1 Background 3

2 Application Structure 3

3 Focus of Analysis 4

4 Scalability 4

5 Efficiency 6

6 Load Balance 8

7 Computational Performance 8

8 Communications 8

9 Summary of observations 9

List of Figures 11

List of Tables 11

Acronyms and Abbreviations 11

References 11

2

POP Ref.No. POP AR 82

1 Background
Application Name: CGPACK-PARAFEM
Applicants Name: Anton Shterenlikht
Applicants Affiliation: University of Bristol
Programming Language: Fortran
Programming Model: hybrid MPI + Coarray Fortran
Source Code Available: Yes
Input data:
Performance study: Audit

The customer stated, he would like to have a general in-depth audit to reveal the potential
scalability issues of their application. Also, large performance variabilities between systems and
software environments have been observed. The application consists of a library CGPACK,
which is developed by the customer. CGPACK is used by the actual application PARAFEM,
which is a well-known proxy-app in the respective community. While PARAFEM does some MPI
communication of its own, CGPACK uses exclusively Coarray Fortran for all its communication.
The customer is hoping to scale this hybrid application, in particular CGPACK, up to many
thousands of cores.

At the time of the audit, the customer could provide compute resources only at Archer@EPCC.
Therefore, performance variations across systems will not be targeted in this Audit. Archer
nodes consist of two Ivy Bridge processors, each with 12 cores. The software environment
consists of PrgEnv-cray/5.2.8, perftools/6.4.6, extrae/3.4.1, and papi/5.5.1.1.

Tracing of Coarray Fortran communication is not natively supported by Extrae. On some
systems, Coarray is implemented on top of MPI, which would be visible to Extrae. On Archer,
however, Coarray is implemented on top of DMAPP which is not supported by Extrae either.
Thus only the MPI communication in the PARAFEM part is accessible to Extrae. Cray’s
profiler Perftools supports Coarray fully, but does not provide traces, which can be analysed
with POP tools. Therefore, data was collected with Extrae for MPI traces and with Perftools
for Coarray profiles in separate runs. Due to the size of trace files, the analysis was done only
up to 64 nodes of Archer corresponding to 1536 cores; runs with 192 cores are used as reference.

2 Application Structure
The spatio-temporal structure of the application from an Extrae perspective (MPI communica-
tion is visible, but Coarray is not) is illustrated in Fig. 1. On 192 MPI ranks, the application
runs for roughly 900 s. The execution is divided into 5 phases (bluesish colour) of roughly equal
duration of several minutes. No MPI communication is taking place during these phases, how-
ever Coarray operations may happen. These phases are separated by short phases characterised
by large amounts of packed collective MPI operations. The communication phases last only
about 1 s to 4 s, where the duration is increasing from one to the other. Overall, the time spent
in MPI communication is around 1 %, and thus almost negligible at this core count. Nonetheless,
the spatiotemporal structure of the next-to last MPI communication phase is shown in Fig. 2:
MPI barriers, allreduce and non-MPI burst are tightly interlaced – no particular communication
pattern is easily discernible.

3

POP Ref.No. POP AR 82

Figure 1: Timeline of the execution of the application as seen by Extrae. Each horizontal row
shows the colour-coded timeline for a particular MPI rank. The 192 MPI ranks are stacked
vertically with the MPI root on top. Redish colours indicate time spent in MPI operations,
while bluish colours correspond to time spent in useful user code or Coarray operations (the
latter are invisible to Extrae and thus perceived as useful user code). Both, time in MPI and
Coarray operations will later be considered as non-useful parallel runtime overhead.

3 Focus of Analysis
The bulk of the analysis presented in this report will focus on the application as a whole. This is
due to the fact that Cray’s Perftools can, in practise, only provide aggregated profile data, while
Extrae can provide time-resolved traces, but is unaware of Coarray operations. Some analysis
done with Extrae will focus on the MPI communication phases, in particular the next-to-last
one shown in Figures 1 and 2.

4 Scalability
Fig. 3 shows data of a strong scaling experiment ranging from 192 to 1536 cores. The figure
shows total application execution time, as well as the breakdown of time spent in useful user
code, Coarray operations, and MPI operations, respectively. Note, that the scaling curve departs
significantly from an ideal one. In particular, at 1536 cores the speedup relative to 192 cores is
only at 39 % of the expected. Any increase in the number of cores beyond will likely result in
increasing wall-clock time. The user code as such scales well, but Coarray operations do not.
In fact, at 1536 cores they take longer than user code. Also, the time spent in MPI increases
with number of cores as expected from collective operations. However, for this particular setup
MPI is still not relevant.

4

POP Ref.No. POP AR 82

Figure 2: Timeline of a MPI communication phase as seen by Extrae. The duration of this
phase is only 3.9 s. It is characterised by some amount of useful user code (shown in light blue)
interlaced with large amounts of collective MPI operations, in particular MPI Barrier (red) and
MPI Allreduce (pink).

 10

 100

 1000

 192 384 756 1536

ti
m

e
 [
s
]

cores

ideal
total
user
CaF
MPI

895.4

502.4

338.9
288.6

Figure 3: Strong scaling experiment. The data is plotted as reported by Perftool. The var-
ious curves show ideal scaling (dotted), total application time (green), useful user code (dark
blue), Coarray Fortran operations (purple), and MPI (light blue). Note, that each data point
represents a single experiment, only.

5

POP Ref.No. POP AR 82

MPI ranks 192 384 768 1536
Execution time 895.4 502.4 338.9 288.6
Useful duration (average) 596.6 294.8 150.3 92.6
Useful duration (maximum) 798.4 411.8 224.9 153.7
Useful duration (sum) 1.1 · 105 1.1 · 105 1.2 · 105 1.4 · 105

Table 1: Breakdown of application time (in s) spent in the execution state useful user code
and its total runtime for runs with increasing number of MPI ranks, respectively. The average,
maximum, and sum are understood to be taken across the set of all MPI ranks, while the
execution time is assumed equal for all.

Number of processes 192 384 768 1536
Global efficiency 66.6 59.4 44.0 25.8

Parallel efficiency 66.6 58.7 44.3 32.1
Load balance 74.7 71.6 66.8 60.2
Communication efficiency 89.2 82.0 66.4 53.3

Serialization efficiency
Transfer efficiency

Computation scalability 100.0 101.2 99.2 80.5
Instruction scalability
IPC scalability

Average IPC 3.1

Table 2: Compilation of performance efficiencies as discussed throughout this report for various
MPI rank counts. The values of efficiency and scalabilities are given in percent. The indentation
level of the rows indicates their hierarchical composition; for instance, parallel efficiency is
composed of load balance and communication efficiency.

5 Efficiency
In this section we discuss certain performance metrics which have been obtained from the
instrumented benchmark runs. The results are presented in terms of a number of efficiencies
and scalabilities, which are related to fundamental performance issues. As usual efficiencies and
scalabilities can take values between 0% and 100%. These metrics are all derived from the time
the application spends in different execution states. For an MPI code, these states are useful
and MPI runtime. In the former case, the cores are executing user code, i.e doing useful work,
while in the latter case the application is executing code which is related to the parallel runtime
system, as for instance doing communication or synchronising processes, and thus not directly
contributing to the application’s business logic. In this particular case, we have two parallel
runtime systems, MPI and Coarray; time spent in either one is considered non-useful parallel
runtime overhead.

Table 1 gives details on the time the application is spending in these states within the
focus of analysis across different number of MPI ranks. From these basic measurements we can
derive a set of performance metrics as presented in Table 2 and discussed in the following. The
terms average (avg), sum and maximum (max) are understood to be taken across the set of
MPI ranks, respectively. Further details on performance metrics used in the POP project can
be found on the project website, in particular [1, 2, 3]. In general, efficiencies are considered
acceptable only if their value is above a threshold of 80 %.

6

POP Ref.No. POP AR 82

Parallel Efficiency (PE) The parallel efficiency is defined as the ratio of the average useful
time over the total execution time.

Parallel Efficiency = avg(useful time)
max(execution time) (1)

The higher the parallel efficiency is, the more time the application spends doing user code,
rather than executing MPI/Coarray functions or paying parallelisation overheads in the runtime
system. The parallel efficiency is found to be around 67 % for the reference run using 192 cores.
This value is already considered unacceptably low – roughly 33 % of the application time is
lost doing communication or synchronisation. With increasing number of cores the parallel
efficiency continues to drop significantly. Note, that the parallel efficiency can be expressed as
the product of load balance and communication efficiency, i.e. PE = LB × CE, both of which
are introduced below.

Load Balance Efficiency (LB) The load balance efficiency is defined as the ratio of the
average useful time over the largest useful time found across ranks.

Load Balance = avg(useful time)
max(useful time) (2)

The higher the load balance efficiency is, the lower is the variation of the time spent doing useful
work among different MPI ranks relative to largest value of useful time across MPI ranks; work
is distributed in a more balanced way. The observed load balance efficiency is around 75 % for
the reference run and drops gradually for increasing number of cores. Again, these values fall
below acceptable threshold. The application’s distribution of work and communication cost is
thus not well balanced across MPI ranks on average. Further discussion on load balance can be
found in Section 6.

Communication Efficiency (CommE) The communication efficiency is defined as the ratio
of the maximum useful time over the maximum execution time for any rank.

Communication Efficiency = max(useful time)
max(execution time) (3)

The higher the communication efficiency is, the lower is the fraction of time spent in MPI/Coarray
operations assuming absence of load imbalances. We find values of 89 % for the reference one,
which is considered acceptable. However, with increasing number of cores communication effi-
ciency falls significantly and is low for runs beyond 384 cores. Further discussion on communi-
cation can be found in Section 8.

Computation Scalability (CompS) The computation scalability is defined as the ratio of
the sum of the useful time in the reference run over the sum of the useful time for a specific
rank count.

Computation Scalability = sum(useful time)reference
sum(useful time) (4)

The higher the computation scalability is, the lower is the increase of computation time in user
code with increasing number of MPI ranks. Essentially, this quantifies the efficiency of parallel
decomposition of the problem. The computational scalability is in all cases close to 100 %, which
is excellent. Thus the parallelisation algorithm does not introduce additional instructions in the
user code with respect to increasing the number of MPI ranks. Only at the largest scale of 1536
cores, the computational scalability seems to drop to 80 %. Further discussion on computation
performance can be found in Section 7.

7

POP Ref.No. POP AR 82

Global Efficiency (GE) The global efficiency is defined as the product of the parallel effi-
ciency and the computational scalability.

Global Efficiency = Parallel Efficiency × Computational Scalability (5)

The higher the global efficiency is, the higher is the overall scaling efficiency when increasing
number of MPI ranks. This metric is similar to the scaling efficiency derived from weak or
strong scaling experiments, but applied to the specific focus of analysis. The application shows
unacceptably low global efficiency of at most 67 % at 192 cores. The low value can be blamed
fully on the low parallel efficiency.

6 Load Balance
As stated above, the application suffers from load imbalance. In this particular case, imbalances
do not seem to stem from imbalance computation, but rather from imbalance in the time spent
on communication, in particular Coarray. Due to the sub-optimal analysis capabilities it is
difficult to see what is really going on. Apparently, the bulk of imbalance arises due to Coarray
operation cosum in the subroutine cgca_clvg of the Fortran module cgca_m3clvg. For instance,
at 1536 cores time on this operation spans from 27 s to 129 s with an average of 73 s for 665
invocations. The next biggest imbalance arises in pgas_sync_all operations. In this case, it
cannot be blamed on particular subroutines or modules.

Computational load imbalances arise in the function/module xx14 with execution times
spanning from 11 s to 153 s with an average of 93 second.

7 Computational Performance
In this section we report on the performance of useful computation regions, i.e. actual user code.
All modern CPUs in principle allow to execute more than one instruction per clock cycle. In
practice, peak CPU performance is never achieved. Using hardware counters, we have measured
the instructions per cycle (IPC) within the useful regions of the application.

For the case of 192 cores, the average IPC is 3.05, which is an excellent value for this
processor. The computational scalability (CompS) metric introduced in Section 5 shows, that
the time doing useful computations does not change significantly with the number of MPI ranks.
Therefore, the parallelisation does not introduce additional workload in terms of CPU time to
solve the underlying algorithm. Therefore, it is reasonable to assume the IPC remains high for
core counts beyond the reference run.

For completion, it is noted, that computational scalability can be expressed in terms of
instructions scalability (measuring how numbers of instructions change) and IPC scalability
(measuring how IPC changes).

8 Communications
The communication efficiency is acceptable for lowish number of of cores, but declines with
increasing core counts. Proper analysis of this is difficult without access to trace data. How-
ever, already the scalability experiment shown in Fig. 3, suggest that Coarray synchronisation
becomes dominant; there is little indication that the time spent in actual Coarray data transfers
increases significantly. The phases of MPI activity, however, are characterised by large amounts

8

POP Ref.No. POP AR 82

of collective operations such as barriers and allreduce. As expected for collective MPI opera-
tions, these do not scale well with increasing number of cores. Therefore it is expected, that
MPI operations will eventually become a performance scalability issue.

For completion, it is noted that formally the communication efficiency (CommE) can be
decomposed further. On one side, time in MPI/Coarray can be due to being engaged in actual
message transfers which is captured by transfer efficiency (TE). On the other hand, MPI ranks
might be blocked in MPI/Coarray calls, such as for instance MPI_Recv, or waiting for com-
munication partners to enter the corresponding MPI call, for instance MPI_Send. This kind of
waiting time and other similar effects are captured by the serialisation or synchronisation effi-
ciency (SE). We can thus define communication efficiency as the product CommE = TE × SE.
Note, that disentangling transfer and serialisation, requires to simulate the application’s commu-
nication on an ideal network which is assumed to have negligible latency and infinite bandwidth.
The useful time will be equal on real and simulated network. However, this kind of analysis is
not possible in this Audit as time-resolved traces are not available

9 Summary of observations
In this report we have analysed the application CGPACK-PARAFEM, which is a hybrid ap-
plication using MPI and Coarray Fortran operations alike. Analysing this application was
challenging due to the fact, that this particular combination of programming models is not
supported by standard tools when time-resolved traces are required. The report is based on
performance data collected on Archer at EPCC for core counts between 192 and 1536.

The computational or single-core performance of the application is excellent as witnessed
by the high average IPC value. Also, increasing the number of cores had no influence on the
duration of computational phases up to 768 cores. Only at 1536, there is evidence suggesting
that the computation work load increases as seen by the drop of computational scalability down
to mere 80 %.

On the other side, the application spends significant time in parallel runtime systems doing
communication and synchronisation. Already at the low end of core counts, i.e. at 192 cores,
the application pays significant parallelisation overheads (roughly one third of the execution
time). The situation only worsens with increasing number of cores. This low parallel efficiency
stems mainly from insufficient load balance, both in user computations and the communication
operations. With increasing core counts, however, the insufficient communication efficiency
starts to dominate parallel efficiency. Most likely the cause is increasing synchronisation cost
as opposed to actual data transfer cost. These observations above refer to Coarray operations
as the code spends little time only in MPI on the scales considered. It is clear however, that
the MPI communication time, in particular for collective operations, will become dominant for
larger core counts.

In order of expected impact we recommend:

Reduce computational load imbalance The distribution of the actual computational work-
load is not well balanced. Addressing this is crucial as this kind of imbalance will have
an adverse effect independently of the actual parallel programming model used. Further
analysis might be required to assess whether the number of instructions is unbalanced, or
otherwise if the efficiency of calculation is non-homogeneous (e.g. NUMA effects, etc).

Reduce impact of Coarray operations The time spent doing Coarray operations, in par-
ticular the collective cosum, is significant. The same is true for synchronisation overhead
associated with Coarray operations. It might be worth evaluating alternatives to collective

9

POP Ref.No. POP AR 82

operations, such as hybrid approaches with local aggregation through shared-memory, or
asynchronous operations which would allow hiding most of communication latency behind
computation.

Reduce impact of collective MPI operations While not critical at the scales under con-
sideration, MPI collective will become a bottleneck at higher core counts. In particular,
many barrier operations have been observed. In most cases, these can be replace with
other less intrusive synchronisation mechanisms, if they are necessary at all.

Analyse drop of computational scalability at high core counts The computational scal-
ability, while initially excellent, shows a marked drop at 1536 cores. First of all, it should
be confirmed that it is not only a statistical artefact. In case it is real, overall performance
will be impacted at higher core counts.

10

POP Ref.No. POP AR 82 LIST OF FIGURES

List of Figures
1 Timeline of the execution of the application as seen by Extrae. Each horizontal

row shows the colour-coded timeline for a particular MPI rank. The 192 MPI
ranks are stacked vertically with the MPI root on top. Redish colours indicate
time spent in MPI operations, while bluish colours correspond to time spent in
useful user code or Coarray operations (the latter are invisible to Extrae and thus
perceived as useful user code). Both, time in MPI and Coarray operations will
later be considered as non-useful parallel runtime overhead. 4

2 Timeline of a MPI communication phase as seen by Extrae. The duration of
this phase is only 3.9 s. It is characterised by some amount of useful user code
(shown in light blue) interlaced with large amounts of collective MPI operations,
in particular MPI Barrier (red) and MPI Allreduce (pink). 5

3 Strong scaling experiment. The data is plotted as reported by Perftool. The
various curves show ideal scaling (dotted), total application time (green), useful
user code (dark blue), Coarray Fortran operations (purple), and MPI (light blue).
Note, that each data point represents a single experiment, only. 5

List of Tables
1 Breakdown of application time (in s) spent in the execution state useful user code

and its total runtime for runs with increasing number of MPI ranks, respectively.
The average, maximum, and sum are understood to be taken across the set of all
MPI ranks, while the execution time is assumed equal for all. 6

2 Compilation of performance efficiencies as discussed throughout this report for
various MPI rank counts. The values of efficiency and scalabilities are given in
percent. The indentation level of the rows indicates their hierarchical composi-
tion; for instance, parallel efficiency is composed of load balance and communi-
cation efficiency. 6

Acronyms and Abbreviations
• MPI: Message Passing Interface

References
References
[1] POP standard metrics for parallel performance analysis, https://pop-coe.eu/node/69,

accessed: August 2017.

[2] Efficiency metrics in a POP performance audit, https://pop-coe.eu/sites/default/
files/pop_files/metrics.pdf, accessed: August 2017.

[3] Paraver efficiencies guide, https://pop-coe.eu/sites/default/files/pop_files/
paraverefficenciesguide.pdf, accessed: August 2017.

11

https://pop-coe.eu/node/69
https://pop-coe.eu/sites/default/files/pop_files/metrics.pdf
https://pop-coe.eu/sites/default/files/pop_files/metrics.pdf
https://pop-coe.eu/sites/default/files/pop_files/paraverefficenciesguide.pdf
https://pop-coe.eu/sites/default/files/pop_files/paraverefficenciesguide.pdf

	Background
	Application Structure
	Focus of Analysis
	Scalability
	Efficiency
	Load Balance
	Computational Performance
	Communications
	Summary of observations
	List of Figures
	List of Tables
	Acronyms and Abbreviations
	References

