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Abstract—Fortran coarrays have been used as an extension
to the standard for over 20 years, mostly on Cray systems.
Their appeal to users increased substantially when they were
standardised in 2010. In this work we show that coarrays offer
simple and intuitive data structures for 3D cellular automata
(CA) modelling of material microstructures. We show how
coarrays can be used together with an MPI finite element
(FE) library to create a two-way concurrent hierarchical and
scalable multi-scale CAFE deformation and fracture frame-
work. Design of a coarray cellular automata microstructure
evolution library CGPACK is described. A highly portable
MPI FE library ParaFEM was used in this work. We show that
independently CGPACK and ParaFEM programs can scale up
well into tens of thousands of cores. Strong scaling of a hybrid
ParaFEM/CGPACK MPI/coarray multi-scale framework was
measured on an important solid mechanics practical example
of a fracture of a steel round bar under tension. That program
did not scale beyond 7 thousand cores. Excessive synchro-
nisation might be one contributing factor to relatively poor
scaling. Therefore we conclude with a comparative analysis of
synchronisation requirements in MPI and coarray programs.
Specific challenges of synchronising a coarray library are
discussed.

Index Terms—Computer aided engineering, Scientific com-
puting, Parallel programming, Supercomputers, Parallel algo-
rithms, Mechanical engineering, Microstructure

1. Introduction

Many deformation and fracture problems of solid me-
chanics involve multiple competing physical processes oc-
curring at different time and length scales. A variety of
multi-scale modelling approaches have been proposed to
treat such problems, e.g. combined atomistic and contin-
uum mechanics [1f], molecular dynamics and continuum
mechanics [2]], discrete dislocation and continuum plasticity

[13], etc. The cellular automata (CA) method has been used
together with finite elements (FE), in a multi-scale CAFE
approach for problems involving material microstructure,
such as solidification [4]], [S]], recrystallisation [|6] or fracture
of polycrystals [7]-[10]. FE is used to solve the continuum
mechanics problem (coarse scale) to calculate the macro-
scopic quantities, such as the strain, stress or temperature
gradients, while the microstructure (fine scale) is updated
with the CA method. Each iteration of the CAFE model
continuum mechanics quantities are passed from the coarse
FE scale to the fine CA scale (localisation) and damage
variables are passed from the CA scale back to the FE
scale (homogenisation) [11]. Thus CAFE is a two-way
hierarchical concurrent multi-scale framework [12].

In the 3D CAFE method the space is partitioned into
identical cells, e.g. cubic. Cells have physically meaningful
states, e.g. liquid phase, crystal with a certain rotation tensor,
crack front, crack flank, cleavage plane of a particular type,
etc. The state of each cell at the next iteration is determined
by the state of that cell, the states of its immediate neigh-
bourhood cells, (e.g. the 26-cell Moore’s neighbourhood)
and some continuum FE field variables (e.g. stress, strain
or temperature), all taken at the current iteration. The fact
that the CA method has an explicitly ”local” domain of
influence, with no global equilibrium requirements, opens
opportunities for parallelisation. Each cell can be updated
independently - in parallel. The cell update algorithm is
much simpler than in the FE method. Hence a much higher
CA resolution can be achieved compared to the FE method,
for the same computational cost.

CA spaces can be infinite or finite. A finite CA space
is most useful if used with regular boundaries, typically
periodic (self-similar) or fixed. Coarrays, a Fortran native
means for SPMD programming [[I13]-[15], are a natural
implementation choice for CA models. A 3D CA space
with cubic cells of discrete states maps perfectly onto a 3D
integer array coarray. In contrast the FE part of the CAFE
model, which implements the coarse scale continuum solid
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Figure 1. Schematic of the CA space.

mechanics, typically has irregular boundaries. Most often
MPI is used to implement parallel Lagrangian FE solvers.
In this work a hybrid coarray/MPI parallel paradigm is used
to implement a flexible, expandable and scalable CAFE
framework.

Coarrays can coexist with other parallel technologies,
such as MPI or OpenMP, although to date there only a
few examples of such hybrid codes. The European Centre
for Medium-range Weather Forecasts (ECMWF) have used
coarrays in combination with MPI and OpenMP in their
codes [16]]. Coarrays have been used together with OpenMP
in plasma codes [17].

In the following sections we describe how the CAFE
model was implemented using a hybrid coarray/MPI ap-
proach. We present strong scaling results and discuss syn-
chronisation challenges.

2. The coarray/MPI framework

ParaFEM, a highly scalable and portable MPI FE li-
brary written in Fortran 2003, was used in this work,
parafem.org.uk, [18]], [19]. Previously ParaFEM has
been used in large scale simulations in nuclear fusion re-
search [20]], [21] and bio-mechanics [22], [23].

CGPACK is a scalable CA library written in Fortran
2008 with extensive use of coarrays, cgpack.sf.net.
Work on CGPACK started in 2013 on HECToR, then the
UK national HPC system [24]]. CGPACK has since been
ported to Intel and OpenCoarray/GCC platforms [25], [26].

Both ParaFEM and CGPACK are being actively devel-
oped, including contributions from the UK Software Sus-
tainability Institute, software.ac.uk, and grants from
the embedded CSE programme of ARCHER, the current UK
national HPC system. Both ParaFEM and CGPACK libraries
are distributed under BSD license.

2.1. Size of the CA coarray

CGPACK module cgca_m2phys deals with physical
units and sizing of the main CA coarray.

The 3D CA space is used to represent a rectilinear
volume of material microstructure, of physical dimensions
ly X ls x I3, see Fig. |1l The CA space is implemented as a
4D integer allocatable array coarray, with a 3D coindex set.
The first 3 array dimensions identify a particular CA cell.
The fourth array dimension is used to store multiple types
of microstructural information, e.g. grains or damage [27]:

body (domain)

Figure 2. Schematic of the FE domain.

integer ,allocatable

The exact dimensions and codimensions of the coarray
space are chosen at runtime, based on the available number
of images, N. First the codimensions are chosen, ¢y, ¢2, c3,
such that ¢y X ¢y X c3 = N. Arbitrarily we set ¢; > co > c3.
The codimensions are chosen to minimise ¢; — c3, i.e.
to make the coarray grid as ‘cubic’ as possible. This is
advantageous because it minimises the total number of halo
cells, and thus the amount of remote data to transfer. The
quality of partitioning the microstructure into a 3D array of
images is assessed by ¢ = 1 — (¢; — ¢3)/(IN — 1), so that
q = 1 means ¢; = cg, i.e. the lowest possible number of
halo cells while ¢ = 0 means that ¢; = N,¢c, = ¢3 = 1,
indicating that the number of halo cells is maximised.

Prior work showed that mesh independent CA results
are achieved when each crystal (grain) is represented by
at least 10° cells on average [28]. Then, given the desired
microstructure mean grain size, d, the first 3 dimensions of
space are calculated.

As an example consider a simulation of a 12 x 12 x 20
mm volume of polycrystalline microstructure with d = 2mm
on 192 images. Array space with 2 types of microstruc-
tural information is then allocated as:

space (35,70,77,2) [8,4,%] )

where c3 = 6. This allows for simulating 360 grains with
q = 0.98, with the linear resolution of 23.2 cells per mm.
The total size of the CA model is 280 x 280 x 462 =~ 36
million cells. In general it is not possible to represent phys-
ical space with the exact given dimensions, with the same
linear resolution along each coordinate axis, as a discrete
CA space. In this example, the volume of microstructure
that is actually simulated is 12.06 x 12.06 x 19.91 mm.

allocate (

2.2. Establishing the CA to FE mapping

CGPACK module cgca_m3pfem contains data struc-
tures and subroutines which establish a mapping between
the CA space and the FE mesh. A schematic example of
an irregular FE domain is shown in Fig. 2] Sometimes, the
CA space will be fully inside the FE model, but in general,
the CA space can be of arbitrary size and orientation with
respect to the FE domain, depending on what deformation
and/or fracture phenomena are to be studied with it, as

space (:,:,:,:)[:,:,:]



multi—scale model

Figure 3. Schematic of a multi-scale CAFE model composed of the FE
domain superimposed with the CA material space.

multi—scale model

Figure 4. Possible partition of the multi-scale model on 4 PEs.

shown in Fig. 3] Some FEs will occupy the same physical
space as some CA cells. These FEs and cells form a two-
way macro/micro multi-scale CAFE model. However, as
indicated in Fig. |3 in general, there will be cells occupy-
ing physical space outside of the body. Such cells do not
participate in a multi-scale CAFE analysis.

The coarray/MPI CAFE framework is built with an as-
sumption that at runtime there is always an identical number
of MPI processes and coarray images, and that the first
MPI process and the first image exist on the first processing
element (PE), and so on.

A schematic partition of the CAFE model on 4 PEs
is shown in Fig. ] The boxes show on which PE the
corresponding parts of the model are stored. For example,
“image 1” and "MPI 1” parts of the model are stored on PE
1. However, these FEs do not share physical space with these
CA cells. Instead cells on image 1 share physical space with
FEs on PE 3, labelled "MPI 3”. This is important because
information transfer is required only between CA and FE
which occupy the same physical space. In this example
the MPI part of the model stored on PE 3 will have to
communicate with the coarrays stored on PEs 1 and 3.

Communications between the MPI (FE) and the coarray
(CA) parts of the coarray/MPI (CAFE) hybrid model are
shown schematically with arrows in Fig. [5] The imbalance
in the communication pattern is clear. The FE part of the
model stored on PE 4 will not communicate with CA at all.
However, the FE part of the model stored on PE 1 will need

PE 3 PE 4

Figure 5. Schematic of communications between the MPI (FE) and the
coarray (CA) parts of the coarray/MPI (CAFE) hybrid model on 4 PEs.

to communicate with CA coarrays stored on PEs 2 and 4.
The mapping of FE to CA is established via a private
allocatable array of derived type:

type mcen

integer image
integer elnum
real centr (3)

end type mcen

type( mcen ), allocatable Icentr (:)

based on coordinates of FE centroids calculated by each MPI
process (lcentr stands for local, i.e. non-coarray array
of centroids). These coordinates are stored in a coarray of
derived type with allocatable array component:

type rca

real , allocatable :: r(:,:)
end type rca
type( rca ) centroid_tmp [*]

which is allocated as

allocate ( centroid_tmp%r (3, nels_pp) )

where nels_pp is the number of FE stored on this PE.
There are two different routines which establish
lcentr on each image from centroid_tmp. Subroutine
cgca_pfem_cenc implements an all-to-all communica-
tion pattern, i.e. each image reads centroid_tmp from
every image. Subroutine cgca_pfem_map uses tempo-
rary arrays and coarray collectives CO_SUM and CO_MAX,
which are described in TS18508 [14]]. Coarray collectives
will be standardised in the next revision of the standard,
Fortran 2015. At the time of writing coarray collectives
are supported by Cray and OpenCoarray compilers. The
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Figure 6. 1lcentr arrays on two images P and Q.

two routines differ in their use of remote communications.
However, both routines implement the same algorithm for
establishing 1centr - if the centroid of an FE on any image
is within the CA coarray on this image, then this FE is added
to lcentr on this image.

Fig. [f] schematically shows lcentr arrays established
on two images P and Q. In this example finite element n,
stored on image Q, has centroid coordinates r, which identify
a physical location within the CA coarray on image P. So
this element is stored in the lcentr array on image P.
Finite element m, also stored on image Q, has centroid
coordinates u, which identify a physical location within the
CA coarray also on image Q. So this element is stored in
the 1centr array on image Q. FEs with centroids outside
of the CA space are not entered in 1centr. lcentr plays
a key role in information transfer between the FE and the
CA parts of the multi-scale CAFE model.

2.3. CA cells outside the FE model

After 1centr has been established, the second impor-
tant mapping issue can be resolved. CA cells which are
outside of the FE model must not be processed. This means
no fracture propagation can occur in such cells. However,
because of finite resolution in the FE model and in the
CA, this problem cannot be posed precisely. Depending on
the FE element size and the CA cell size, a cell can be
deemed to lie inside the FE model or outside. The algorithm
implemented in the ParaFEM/CGPACK interface uses some
characteristic distance measure, L.. The criterion is this - if
the distance between a cell and the centroid of any FE in
lcentr is less than L., then this cell is considered to lie
inside the FE model, otherwise it is considered to lie outside
of the FE model. Cells which lie outside of the FE model
are set to cgca_state_null and are not processed in
any of the fracture routines. Although these cells represent
microstructure in the material layer, this microstructure is
simply ignored in all fracture calculations.

This mapping is established with a divide and conquer
approach. The algorithm starts by checking boxes of CA
cells the size of the whole coarray on each image. If a box
is partially in and partially out, it is split into two smaller
boxes and the process continues until each box is either
fully in, or fully out. If necessary, CA boxes are divided
down to single CA cells. This algorithm is implemented in
routines cgca_pfem_partin, cgca_pfem_boxin and
cgca_pfem_cellin.

2.4. CAFE fracture modelling

Diverse CAFE fracture models can be constructed from
the CGPACK and the ParaFEM libraries. The simplest case,
presented here, uses a combination of linear isotropic elastic
FE with cleavage (fully brittle transgranular fracture mode)
CA. Cleavage is the dominant low temperature fracture
mode in body centre cubic (bcc) crystals, such as iron. Each
time or strain increment of the FE solver the stress tensor,
t, is passed to the CA, where it is resolved into normal
stresses on {100} and {110} crystal planes - t100,¢110 [7],
[L1]. The localisation (or scatter) algorithm distributes the
FE quantities over CA cells based on existing damage in
the microstructure, while preserving the FE energy [12].

The cleavage model includes 2 parameters - a fracture
stress, o, linked to the free surface energy, 7, and a
characteristic length, L. If t199 > o or t119 > o, then a
CA cleavage crack is extended by L per unit of time. Crack
morphology is reduced to a single damage variable, d, by
the homogenisation (or gather) algorithm, and the Young’s
modulus of each FE integration point is reduced according
to d, where d = 1 means no damage, and d = 0 means that
the integration point has no load bearing capacity. To avoid
numerical instability the FE stiffness is not reduced to below
103 of the original value (corresponding to d = 1073).

CAFE cleavage simulation is shown in Figs. The
FE model is a 140mm long mild ferritic steel cylinder of
10mm diameter and 100mm gauge length. One end of the
cylinder is constrained and an axial force is applied to the
other end. The FE elastic properties are the Young’s modulus
of 200GPa and the Poisson’s ratio of 0.3. Details of the CA
material block were given at the end of Sec. 2.1 The CA
block is positioned centrally on the cylinder, see Figs.

Fig. [/] shows the polycrystalline microstructure layer of
the space coarray. The colour of each grain (single
crystal) encodes its rotation tensor. Fig. [§] shows the grain
boundaries in the fracture layer of the space coar-
ray. In this model the inactive cells, i.e. cells of state
cgca_state_null (Sec. 2.3) are not shown. Note that
some microstructure still protrudes a little outside the
FE cylinder due to a coarse grain resolution of routine
cgca_pfem_partin, Sec.[2.3

Fig. 0] shows the macro-crack emerging from linking
cracks on preferential cleavage planes in individual crystals.
There are 4 cell fracture states in this model: -1, -2, -3 and
-4. -1 (yellow) denotes crack flanks on 100 planes. -3 (light
blue) denotes crack flanks on 110 planes. Both yellow and
light blue regions are clearly visible in Fig.[9] -2 (dark blue)



Figure 7. CAFE modelling of a steel cylinder under tension showing the
CA microstructure. The FE cylinder mesh is semi-transparent for clarity.

Figure 8. CA microstructure grain boundaries, with inactive cells removed.

denotes crack edges on 100 planes. -4 (cyan) denotes crack
edges on 110 planes.

Fig. shows the FE mesh at the end of the simulation,
when the macroscopic cleavage crack has propagated across

Figure 10. The distorted FE mesh at the end of the CAFE simulation, with
the axial displacement contours.

nearly the whole of the cross section (Fig. [9). The contour
plot of the axial displacement is superimposed over the
mesh. Note a high displacement gradient across the crack.
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Figure 11. ParaFEM (MPI) scaling for a 3D transient flow explicit analysis
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Figure 12. CGPACK (coarrays) scaling for a 3D solidification program on
HECTOoR, Cray XE6. Reproduced from [24].

3. CAFE performance

Individually both ParaFEM and CGPACK libraries
showed the potential to scale well into tens of thousands of
cores, as seen in Figs.[TT]and[I2] Fig.[12]shows the effects of
different reduction algorithms in a 3D solidification coarray
program. It is shown that a coarray collective, CO_SUM,
gives the most consistent performance up to 32k cores. Note
that since both ParaFEM and CGPACK are libraries, scaling
analysis makes sense only in context of specific programs
built with these libraries.

A representative scaling of a CAFE multi-scale fracture
simulation with 1M FE and 800M CA cells on ARCHER,
Cray XC30, is shown in Fig. The scaling limit is only
about 7k cores (300 Cray XC30 nodes). Prior profiling work
of this particular MPI/coarrays program identified several
communication and computational hotspots [27], e.g. Fig.
[13] shows that replacing an all-to-all communication pattern
(cgca_gcupda routine) with a nearest neighbour com-
munication (cgca_gcupdn routine) increased the scaling
limit from 3k to 7k cores.

3.1. CAFE 10

A typical volume of microstructure in a CAFE approach
might include 10® grains or 10! cells. With 4-byte integers
to store cell states, each layer of space coarray will take
~ 373GB, i.e. 745GB for both fracture and microstructure
datasets. Multi-step CAFE analyses, e.g. progressive fracture
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Figure 13. ParaFEM/CGPACK CAFE scaling.

propagation through microstructure, demand that space
coarray is written to disk at regular intervals. It is clear that
efficient coarray 10 is required for good scaling.

The Fortran standard does not include parallel I0. How-
ever, approaches to achieving high 10 performance in MPI
programs can be readily applied to coarrays [29], [30].

A single writer/single file serial model is easiest to
implement, but has the lowest performance, about 100MB/s
on the Cray XE6. In contrast, a multiple writers/single file
parallel model has the highest performance using MPI/IO.
With some tuning of the Lustre file system, in particular
Ifs stripe size and stripe count settings, rates of 2.3 GB/s
have been achieved. In all cases the CA space array
coarray is written out as a binary dataset with no metadata.
Knowledge of the array extents and of linear spatial resolu-
tion is required for post-processing. At present this metadata
is written out separately, but work is under way to provide
NetCDF [31]] and HDF5 IO capability in CGPACK.

At present ParaFEM uses only serial 10. Work is under
way to implement MPI/IO in ParaFEM.

4. Synchronising a coarray library

The CGPACK library consists of a number of modules
and submodules, with serial and parallel subroutines. A va-
riety of programs can be built, using as many or as few CG-
PACK library routines as required. The design of the library
makes only very basic assumptions on the order of calls to
CGPACK routines in a program, e.g. fracture routines must
be called after routines establishing microstructure. An error
condition is flagged if the order of these routines is reversed.
In most other cases the logic of the order of the invocation
of CGPACK routines is left to the user.

An immediate consequence of such design is that inter
image synchronisation becomes a hard decision. The For-
tran standard imposes very strict segment ordering rules to
ensure data integrity and to prevent deadlocks [13].

Synchronisation requirements differ for each individual
CGPACK routine. For example, a halo exchange algorithm
logically maps best onto SYNC IMAGES image control
statement. Assuming a 3D grid of images, [:,:,:],
see Sec. each image has to synchronise only with
its 26 neighbouring images, i.e. image with the coin-
dex set [a,b,c] has to synchronise with images from



[a-1l,b-1,c-1] to [a+1,b+1, c+1]. However, the li-
brary writer has no way to predict what routines will precede
or succeed the halo exchange routine. In practice this often
means that the only safe image control statement is SYNC
ALL, a global barrier. A fragment of a typical coarray CAFE
program might look like this:

inside
inside
inside

call
call

cgca_nr( space ) !/
cgeca_rt( grt ) !
call cgca_sld( space ) !
call cgca_igb( space )
sync all

call cgca_hxi(
sync all

call cgca_gbs(
sync all

call cgca_hxi(
sync all

sync all

call cgca_gcu(

sync all
sync all
sync all
space )
space )
space )

) ! local routine
! no sync needed

space

Note that some CGPACK routines include image control
statements in the beginning and/or the end, e.g. cgca_sld,
the solidification routine and cgca_nr, the nucleation rou-
tine. It does not make sense to start cgca_s1ld on any
image until cgca_nr has finished on all images. In such
cases the responsibility for arranging sufficient synchroni-
sation has been taken away from the end user. However, in
other cases, the user is likely to deploy SYNC ALL to be
safe, as shown above.

While excessive use of SYNC ALL might lead to over
synchronisation, and hence to poor scaling, our prior pro-
filing analysis on Cray XC30 concluded that the current
scaling limit of 3k cores, see Fig. [I3] is not related to this.

ParaFEM synchronisation properties are very different,
because most of its routines use 2-way message passing
MPI calls. In this regard it is very fortunate that in a
ParaFEM/CGPACK CAFE program the calls to each library
do not alternate often, - there is typically a large chunk of
code made of ParaFEM calls, then SYNC ALL, then a large
chunk of code made of CGPACK calls, etc. A fragment of
a CAFE fracture program is shown below.

call cgca_pfem_salloc( nels_pp,

sync all

l'end CGPACK part

!'start ParaFEM part

CALL rearrange(rest)

elements_0: DO iel=1,nels_pp

CALL find_g3( g_num_pp(:,iel), &
g_g pp(:,iel), rest )

END DO elements_0

nip, nst

5. Opportunities for thread parallelisation

Many CA routines contain triple nested loops over
all cells on an image. An example below is taken from

cgca_clvgp, the cleavage propagation routine. Each it-
eration of the main loop all cells in the CA on an image
are processed.

main: do iter = 1,N

do x3 = Ibr(3), ubr(3)
do x2 = lbr(2), ubr(2)
do x1 = 1Ibr (1), ubr(1l)
live: if

! scan only through undamaged cells
call cgca_clvgn( clvgflag )
if ( clvgflag ) call sub( space )
end if live
end do
end do
end do
call co_sum( clvgglob )
sync all
call cgca_hxi(
sync all
call cgca_dacf(

space )

space )

Such nested loops might present good opportunities for
thread parallelisation with either OpenMP or OpenACC (e.g.
on GPUs or Xeon Phi), although the use of underpopulated
nodes might be required. Fortran 2008 new intrinsic DO
CONCURRENT should also be explored, although at present
its performance portability is inferior to OpenMP. Recently
the ParaFEM has been ported to Xeon Phi [32]]. Porting of
CGPACK to Xeon Phi is planned for the future.

6. Conclusions

The design and application of a Fortran coarray CA
microstructure simulation library CGPACK has been pre-
sented. The use of an integer allocatable array coarray with
4 dimensions and 3 codimensions in CGPACK for a 3D
CA polycrystalline microstructure simulation was success-
ful. A microstructure/continuum coarray/MPI deformation
and fracture framework has been successfully established
by linking together the MPI FE library ParaFEM with CG-
PACK. Considerable attention has been given to establishing
a robust FE to CA mapping data structures and procedures,
resulting in a concurrent hierarchical two-way multi-scale
CAFE model. Coarrays of derived type with allocatable
components were found to be very useful for maintaining
dynamic data structures which link the MPI and the coarray
parts of the framework. Although some CGPACK coarray
CA programs can scale well at least up to 32k cores, at
present the fracture CGPACK/ParaFEM multi-scale CAFE
model does not scale beyond 3k cores on Cray XC30. A
cleavage fracture of a cylindrical ferritic steel specimen
was shown as a simple CAFE application. However, a very
diverse range of CAFE programs can be created by using
ParaFEM with CGPACK. This work proves that interfacing
MPI and coarrays is easily achievable. This opens many
possibilities for applications in other areas of science and
engineering. In addition, because both ParaFEM and CG-
PACK are distributed under BSD license, the two libraries



can be used to build diverse benchmarking miniapps for
compiler and runtime library writers and system architects
for exploring parallel performance of coarray and/or coar-
ray/MPI programs.
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