
Profiling coarray+MPI miniapps with TAU and the Intel
compiler

Anton Shterenlikht
Mech Eng Dept

Queen’s Building, University
Walk

Bristol BS8 1TR, UK
mexas@bris.ac.uk

Sameer Shende
Performance Research Lab
5294 University of Oregon
Eugene, OR 97403-5294,

USA
sameer@cs.uoregon.edu

Luis Cebamanos
Edinburgh Parallel Computing

Centre (EPCC)
The University of Edinburgh,

King’s Buildings
Edinburgh EH9 3FD, UK

l.cebamanos@epcc.ed.ac.uk
Lee Margetts

School of Mechanical, Aero
and Civil Engineering

The University of Manchester
Manchester M13 9PL, UK

lee.margetts@
manchester.ac.uk

Jose D. Arregui-Mena
School of Mechanical, Aero

and Civil Engineering
The University of Manchester

Manchester M13 9PL, UK
jose.arregui-mena@

manchester.ac.uk

ABSTRACT
Coarrays are a native Fortran means for SPMD parallel
programming, implementing a single-sided communications
model. Coarray Fortran belongs to the PGAS class of par-
allel languages. TAU (Tuning and Analysis Utilities) toolkit
is used in this work for profiling and tracing of pure coar-
ray programs and mixed coarray+MPI miniapps. We show
that the Intel MPI compiler maps coarray remote opera-
tions and synchronisation routines onto MPI-2 RMA calls.
Four coarray programs, of progressively increasing complex-
ity, are studied. It is shown that in iterative programs, where
some remote data access and image synchronisation are per-
formed each iteration, performance is heavily dominated by
MPI_Win_unlock routine. These results might open a possi-
bility for Intel developers to improve and optimise their MPI
based coarray implementation.

CCS Concepts
•Computing methodologies → Parallel programming
languages; Massively parallel and high-performance
simulations; Multiscale systems;

Keywords
Fortran coarrays; MPI; RMA; TAU; profiling; tracing; Intel

1. INTRODUCTION
Coarrays are a native Fortran means for SPMD parallel

A progress report, JUN-2016, The University of Bristol, UK

ACM ISBN X-XXXXX-XX-X/XX/XX.

DOI: 0

programming [16]. Although coarrays (or co-arrrays, Co-
Array Fortran (CAF), as they were originally known) have
been used, particularly on Cray systems, as an extension,
for nearly 20 years [10], they became part of the Fortran
standard only in 2010 [6]. Coarray capabilities will be sub-
stantially expanded in the Fortran 2015 standard [7]. Coar-
rays offer simple syntax and portability for SPMD standard
conforming Fortran programs. Coarrays can be added grad-
ually to existing Fortran projects and can co-exist with other
popular parallel technologies, primarily OpenMP and MPI
[9]. In an attempt to ensure coarray integrity, the standard
writers introduced very strict image ordering and synchro-
nisation rules. As a result, a standard conforming coarray
program will not deadlock or suffer races.

However, coarray performance can vary significantly. This
is partly because coarrays represent a very high level of ab-
straction, and Fortran compilers can use different transport
libraries to map coarrays data and communications to hard-
ware. Cray systems use DMAPP, the Intel implementation
uses MPI and the OpenCoarrays implementation is designed
to support MPI and GASNet [4].

In our previous work we successfully used proprietary Cray-
PAT profiling and sampling tools to optimise performance
of mixed coarray+MPI miniapps on Cray systems [1]. Re-
cently TAU (Tuning and Analysis Utilities) was shown to
support coarray programs [11, 5]. In this work we use TAU
to profile and trace several pure coarray and mixed coar-
ray+MPI programs using the Intel Fortran compiler.

2. PROFILING AND TRACING WITH TAU
TAU1 [12], is a popular open source set of tools for perfor-

mance analysis, particularly on HPC systems. In this work
TAU 2.25.1 was used.

TAU is often used together with the Program Database
Toolkit (PDT), 2, which is a framework for analysing source
code. However, PDT 3.22 does not yet support coarrays.

1https://www.cs.uoregon.edu/research/tau
2https://www.cs.uoregon.edu/research/pdt

Hence compiler based instrumentation was used in this work,
which is enabled with TAU flag -optCompInst.
Jumpshot-4, developed by the Argonne National Lab (ANL)3,

was used to view TAU traces.
The University of Bristol BlueCrystal phase 3 system was

used for this work4. Each node has a single 16-core 2.6 GHz
SandyBridge CPU and 64GB RAM. Intel Cluster Studio
XE, version 16.0.2, was used. TAU was configured with

-mpi -c++=mpiicpc -cc=mpiicc -fortran=mpiifort

2.1 Case studies

2.1.1 Calculation of π using Gregory-Leibniz series
This example is taken from the University of Bristol coar-

rays course5, folder examples/prof/tau/5pi.
π can be calculated using the Gregory-Leibniz as follows:

π = 4
∞∑

n=1

(−1)n−1

2n− 1
(1)

This is a classical parallel problem - all workers calculate
their own partial sums in parallel. The total sum is calcu-
lated via a collective routine or by a master process. The
series limit was set arbitrarily at 235. The key fragment is
shown below.

real :: pi[*]

do i = this_image(), 2**35, num_images()

pi = pi + (-1)**(i+1) / real(2*i-1)

end do

sync all ! all images synchronise here

if (this_image() .eq. 1) then

do i = 2, num_images()

pi = pi + pi[i]

end do

pi = pi * 4.0

end if

Coarray collectives are not yet in the Fortran standard.
They are described in [7] and will become a part of Fortran
2015 standard. Cray and OpenCoarrays already support
coarray collectives. Intel Fortran 16 does not. Hence image
1 is calculating the total sum by pulling partial sums from
all other images with pi = pi + pi[i].

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 5 10 15 20 25 30 35 40
 0

 5

 10

 15

 20

 25

 30

 35

 40

ru
n
 t

im
e
,
s

s
c
a
li
n
g

number of images

runtime
scaling

ideal

Figure 1: Calculating π on 2 nodes - scaling.

3http://www.mcs.anl.gov/research/projects/perfvis/
software/viewers/index.htm
4http://www.acrc.bris.ac.uk
5http://coarrays.sourceforge.net

Fig. 1 shows scaling of this code on two nodes with Intel
-fast optimisation. As expected, performance drops when
the number of images exceeds the number of cores. We
profile this code on 32 cores with 32 images.

Figure 2: Calculating π with 32 images - profiling.

Fig. 2 shows an even spread of load over all nodes, sorted
by exclusive time. Note that TAU reports nodes starting
from 0, so node n means image n+1. MPI_Init (green) and
MPI_Finalize (purple) times differ between nodes 0-15 and
nodes 16-31, highlighting the boundary between the physical
CPUs. Time spent in other MPI routines is negligible.

Figure 3: Calculating π - single image profile.

Fig. 3 shows exclusive time profile on node 13 (image 14).
It is clear that Intel implementation of coarrays uses remote
memory access (RMA) one-sided communications of MPI-2,
where a typical sequence of calls for a lock/unlock synchroni-
sation is MPI_Win_create, MPI_Win_lock, MPI_Put, MPI_Get,
MPI_Win_unlock and MPI_Win_free [18]. Note that Fig. 3

Figure 4: Calculating π with 32 images - a trace
fragment.

shows that of these calls, nearly 90% of time is spent in
MPI_Win_unlock. A fragment of the trace for this program,
taken after sync all, is shown in Fig. 4. It highlights the
dominance of MPI_Win_unlock calls.

 40

 50

 60

 70

 80

 90

 100

 110

 0 5 10 15 20 25 30 35 40
 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

ru
n
 t

im
e
,
s

s
c
a
li
n
g

number of images

runtime
scaling

Figure 5: Scaling of the Laplacian code coback1-tau

on 2 nodes.

2.1.2 A Laplacian solver
This example is taken from the University of Bristol coar-

rays course6, folder examples/prof/tau/9laplace.
Program coback1-tau.f90 iteratively reconstructs a 2D

array p from previously calculated 2D edge array edge. Halo
exchange and sync images synchronisation is used every it-
eration. The key fragment is show below.

img = this_image() ; nimgs = num_images()

outer: do iter = 1, niter

if (img .ne. 1) op(:, 0) = op(:, size2) [img-1]

if (img .ne. nimgs) op(:, size2+1)=op(:, 1)[img+1]

do j = 1, size2 ; do i = 1, width

p(i,j) = 0.25 * (op(i-1,j) + op(i+1,j) + &

op(i,j-1) + op(i,j+1) - edge(i,j))

end do ; end do

op = p

if (img .ne. 1) sync images(img-1)

if (img .ne. nimgs) sync images(img+1)

end do outer

6http://coarrays.sourceforge.net

Figure 6: Profile of coback1-tau on 10 images.

Figure 7: Profile of coback1-tau on a single image.

Fig. 5 shows scaling of program coback1-tau on two
nodes. Best performance is achieved on 10 images. Pro-
filing results with 10 images are shown in Figs. 6 and 7.
MPI_Win_unlock now dominates the run time, and the

program itself, cobacktau, accounts for less than half of
time. Significant load imbalance is seen in MPI_Recv.

Fig. 8 shows the data transfer pattern and dominance of
MPI_Win_unlock calls in the program at the exit from the
outer loop. Note also an emerging pattern in remote calls,
when no pattern is present in the source code.

Figure 8: A fragment of the trace of the Laplacian
code coback1-tau on 10 images.

2.1.3 Cellular automata microstructure simulation code
CGPACK,7 is a BSD licensed Fortran coarray library for

microstructure simulation [15, 13]. It uses a cellular au-
tomata approach, where a 3D space is represented as a struc-
tured grid of cells. Cell states are updated iteratively. At
every iteration the state of each cell is determined by the
states of its neighbouring cells and, possibly, by a superim-
posed field, such as temperature or strain.
The CGPACK distribution includes a number of test pro-

grams, e.g. tests/testABW.f90, studied here. This pro-
gram simulates formation and cleavage fracture of polycrys-
talline microstructure. It calls multiple routines to manipu-
late this coarray:

integer, allocatable :: space(:,:,:,:) [:,:,:]

Intel -O2 optimisation was used. Figs. 9 and 10 show that
the time is dominated by MPI_Win_unlock even more than in
the previous examples. MPI_Barrier is in the second place.
Only 2 CGPACK routines, the halo exchange, cgca_hxi,
and the cleavage fracture propagation, cgca_clvgp_nocosum,
exceed the threshold of 1% of the total time.

Figure 9: Profile of CGPACK program testABW.

Figure 10: Profile of testABW on a single image.

Fig. 11 shows the trace of testABW, while the program is
inside the halo exchange routine cgca_hxi. MPI_Win_unlock
is run on all images except 17, which is in MPI_Barrier. The
source code points to no obvious explanation of why only a
single image would call a global barrier at this point.
7http://cgpack.sourceforge.net

Figure 11: A fragment of trace of testABW.

Figure 12: 3D profiling bar chart of program
xx14std, coarray+MPI, on 2 nodes with 32 images.

2.1.4 Multiscale coarray+MPI fracture model
ParaFEM,8 is a BSD licensed9 highly scalable Fortran

MPI finite element library [17]. It has recently been used
in nuclear fusion research [3] and biomechanics [8].

By linking ParaFEM with CGPACK a multi-scale cellu-
lar automata finite element (CAFE) framework was created
[15]. In CAFE approach structural scale is represented with
FE and material microstructure evolution is modelled with
CA. A concurrent two-way information transfer is estab-
lished between the FE and the CA layers [14, 2].

ParaFEM includes several CAFE miniapps, as a set of de-
veloper programs, under src/programs/dev/xx14. In this
work we profile xx14std.f90. Both ParaFEM and CG-
PACK libraries were instrumented with TAU. Intel -O2 op-
timisation was used. Profiling was done on 2 nodes with 32
images.

8http://parafem.org.uk
9https://sourceforge.net/projects/parafem

Figs. 12-14 show the profiling results for xx14std. The
observations are consistent with the previous two exam-
ples. The load is well balanced across all images. However,
MPI_Win_unlock dominates the run time and MPI_Barrier

is in the second place. Only the program itself, xx14, the
halo exchange routine, cgca_hxi, and the fracture propaga-
tion routine, cgca_clvgp_nocosum, exceed the threshold of
1% of the total time.

Figure 13: Profile of program xx14std, coar-
ray+MPI, on 2 nodes with 32 images.

Note that the Intel coarray implementation includes task
caflaunch, which is assigned a rank 0 (orange bar in Fig.
13). In TAU 2.25.1, when compiler instrumentation is used,
as in the this work, caflaunch is instrumented too. This
creates a problem that both the caflaunch thread and the
coarray program thread write to the profiling file on node
0 (image 1). Because caflaunch persists until the program
exits, this process overwrites all program data on node 0, so
only caflaunch is seemingly present there, as seen in Fig.

Figure 14: Profile of program xx14std, coar-
ray+MPI, on a single image.

Figure 15: A fragment of the trace of coarray+MPI
program xx14std, inside CGPACK routine cgca_sld.

13. The TAU team has proposed a fix for this behaviour,
which is being tested at present.
cgca_clvgp_nocosum is supposed to be the most compu-

tationally expensive routine in program xx14std. It has a
triple nested loop over the first 3 dimensions of space array
coarray. Profiling of this program on Cray XC30 showed
that indeed most of the time was spent in this routine [1].
As was mentioned in the introduction, Cray implementation
of coarrays does not use MPI, so no direct comparison can
be drawn with the present results.

Traces of xx14std show clear differences between those
MPI calls which are included directly in the ParaFEM li-
brary, and the MPI calls into which the Intel compiler trans-
lated the CGPACK coarray remote operations.

Fig. 15 shows a typical fragment of the trace of xx14std,
where CGPACK coarray routines are executed. No commu-
nication pattern or structure can be seen. MPI_Win_unlock

and MPI_Barrier are executed from CGPACK halo exchange
routine cgca_hxi, which is called from cgca_sld.

In contrast, Fig. 16 shows a very well structured MPI
communication pattern translated directly from the MPI
calls in the ParaFEM library.

3. CONCLUSIONS
TAU (Tuning and Analysis Utilities) toolkit is well suited

for profiling and tracing analysis of pure coarray and mixed
coarray+MPI programs, where coarray operations are ulti-
mately mapped onto MPI calls. The Intel implementation of
coarrays seems to rely on MPI-2 RMA, with MPI_Win_unlock

heavily dominating run times in three out of four analysed
programs. These results indicate a potential for optimisa-
tion of (MPI based) coarray implementations, such as Intel
or OpenCoarrays.

4. ACKNOWLEDGMENTS
This work was carried out using the computational fa-

cilities of the Advanced Computing Research Centre, The
University of Bristol, http://www.bris.ac.uk/acrc.

5. REFERENCES
[1] L. Cebamanos, A. Shterenlikht, D. Arregui, and

L. Margetts. Scaling hybid coarray/MPI miniapps on
Archer. In Cray User Group meeting (CUG2016),
London, 8-12-MAY-2016, 2016.

Figure 16: A fragment of the trace of program xx14std, showing MPI routines included directly in the
ParaFEM library.

[2] S. Das, A. Shterenlikht, I. C. Howard, and E. J.
Palmiere. A general method for coupling
microstructural response with structural performance.
Proc. Roy. Soc. A, 462:2085–2096, 2006.

[3] L. M. Evans, L. Margetts, V. Casalegno, L. M. Lever,
J. Bushell, T. Lowe, A. Wallwork, P. Young,
A. Lindemann, M. Schmidt, and P. M. Mummery.
Transient thermal finite element analysis of CFC-Cu
ITER monoblock using X-ray tomography data.
Fusion Eng. Des., 100:100–111, 2015.

[4] A. Fanfarillo. Parallel Programming Techniques for
heterogeneous exascale computing platforms. PhD
thesis, University of Rome Tor Vergata, Italy, 2016.

[5] M. Haveraaen, K. Morris, D. Rouson,
H. Radhakrishnan, and C. Carson. High-performance
design patterns for modern Fortran. Sci. Prog.,
2015:942059, 2015.

[6] ISO/IEC 1539-1:2010. Fortran – Part 1: Base
language, International Standard. 2010.

[7] ISO/IEC JTC1/SC22/WG5 N2048. TS 18508
Additional Parallel Features in Fortran. 2015.

[8] F. Levrero, L. Margetts, E. Sales, S. Xie, K. Manda,
and P. Pankaj. Evaluating the macroscopic yield
behaviour of trabecular bone using a nonlinear
homogenisation approach. J. Mech. Behavior Biomed.
Mater., 61:384–396, 2016.

[9] G. Mozdzynski, M. Hamrud, and N. Wedi. A
partitioned global address space implementation of the
European centre for medium range weather forecasts
integrated forecasting system. Int. J. High Perf.
Comp. Appl., 29:261–273, 2015.

[10] R. W. Numrich, J. Reid, and K. Kim. Writing a
multigrid solver using Co-Array Fortran. Appl.
Parallel. Comp., 1541:390–399, 1998.

[11] H. Radhakrishnan, D. W. I. Rouson, K. Morris,
S. Shende, and S. C. Kassinos. Using coarrays to
parallelize legacy Fortran applications: Strategy and
case study. Sci. Prog., 2015:904983, 2015.

[12] S. Shende and A. D. Malony. The TAU parallel
performance system. Int. J. High Perf. Comp. Appl.,
20:287–331, 2006.

[13] A. Shterenlikht. Fortran coarray library for 3D cellular
automata microstructure simulation. In Proc. 7th
PGAS Conf., Edinburgh, Scotland, UK, 2013.

[14] A. Shterenlikht and I. C. Howard. The CAFE model
of fracture – application to a TMCR steel. Fatigue
Fract. Eng. Mater. Struct., 29:770–787, 2006.

[15] A. Shterenlikht and L. Margetts. Three-dimensional
cellular automata modelling of cleavage propagation
across crystal boundaries in polycrystalline
microstructures. Proc. Roy. Soc. A, 471:20150039,
2015.

[16] A. Shterenlikht, L. Margetts, L. Cebamanos, and
D. Henty. Fortran 2008 coarrays. ACM Fortran
Forum, 34:10–30, 2015.

[17] I. M. Smith, D. V. Griffiths, and L. Margetts.
Programming the Finite Element Method. Wiley, 5
edition, 2014.

[18] V. Tipparaju, W. Gropp, H. Ritzdorf, R. Thakur, and
J. L. Träff. Investigating high performance RMA
interfaces for the MPI-3 standard. In Proc. 2009 Int.
Conf. Parallel Processing, 2009.

