Towards mechanism-based simulation of impact damage using exascale computing

Anton Shertenlikht1, Lee Margetts2, Samuel McDonald2, Neil Bourne2

1The University of Bristol, UK
2The University of Manchester, UK

We have designed a framework for building multi-scale deformation and fracture models for supercomputers. Material microstructure evolution is implemented via cellular automata (CA).

We have developed a scalable Fortran 2008 1 coarray CA library - CGPACK, 2 cgpack.sourceforge.net and coupled it with a highly scalable finite element (FE) library ParaFEM, 3 parafem.org.uk

The resulting CAFE multi-scale framework4,5 is suitable for modelling microstructure/structure interaction problems, such as dynamic fracture.

The framework implements simulation at all scales concurrently with a two way information exchange.6 It is flexible, expandable and can be adapted to other problems. The framework is similar to the idea of a representative volume of material (RVE). It can accommodate different homogenisation and localisation (upscaling/downscaling) algorithms.7,8

Large volumes of microstructure can be analysed. Image below shows a model with over 4×10^9 bcc grains, at a resolution of 10^5 CA cells per grain, i.e. over 4×10^9 cells in total.

Below is a simulation of a cleavage crack propagation in poly-crystalline bcc iron (top image). The macro-crack emerges as cleavage cracks in individual grains join up after crossing grain boundaries. Green cracks are on $\{110\}$ planes, yellow are on $\{100\}$ planes. Cleavage modelling is done on meso-scale with CA. The process is driven by the FE stress fields on the macro-scale (bottom image).

Grain boundaries (GB), crack propagation across GB and GB accommodation fracture can be studied.

References