Many-core and Reconfigurable Supercomputing Conference (MRSC) 2008

The Queen’s University of Belfast, Northern Ireland

Cellular Automata on Nallatech H101-PCIXM: first

results

Anton Shterenlikht

Mechanical Engineering Department, University of Bristol

University Walk, Bristol BS8 1TR, UK
Email mexas@bristol.ac.uk, Tel 0117 928 8233

March 31, 2008

1 Application

The Cellular Automata (CA) — Finite Element (CAFE) model
for transitional ductile to brittle fracture in steels [1] relies on
CA arrays to represent microstructure.

CA is a finite time machine with discrete cell states, which
depend on states of some neighbouring cells via very simple
transfer rules.

CA are integer or logical(boolean) arrays.

Fracture propagation with CA is a change of state from ‘alive’
to ‘dead’. Computationally CA are much cheaper than FE.

-% University of
g BRISTOL

1.1 Microstructure generation with CA

Figure 1: Grain micrograph

1888x18688 2D CA array

1000 — 18
o80 q
800 8
700
7

600
6

580
5

480
4

380
208 3
188 [2
8 1

1] 188 208 Jae 488 588 688 faa Filil) 9886 1688

Figure 2: CA simulated 2D grain microstructure, 1M cells, 10 grains
(colour denotes grain orientation). CA cells are approx. 2 um.

2 Nallatech H101-PCIXM FPGA

Bank | DCR-II Bank 2 DDER-1I Bank 3 DDR-I
Wirtex-4 X User FPGA SRAM SRAM SRAM

SDRAM Mini-
CiMM

4x 2.5Ghbps
serial links —]g
er|TAG Header
Bank 0 DDR-I PCl-X FPGA PCI-X FPGA DDR-I SRAM
SRAM
Figure 3: H101-PCIXM top view [2].
CoolRunner-ll
CPLD for boot
control
X CFO8P Platform
Flash for boot.
200Mhz and
2 250Mhz crystal
: — = ‘g ™~ oscillators

W

PCI-X FPGA DDR-Il SRAM

Figure 4: H101-PCIXM bottom view [2].

2.1 Nallatech H101-PCIXM tech data

e Xilinx Virtex-4 LX100 (XC4VLX100-10FF1148C) - FPGA.
Maximum FPGA clock frequency - 200 MHz.

e 0.4MB internal block RAM per FPGA.
0.5 TB/sec bandwidth and can be pipelined.

e 4 banks (4x4=16MB) of DDR-II SRAM.
6.4 GB/sec bandwidth and can be pipelined.

e 1 bank (512MB) DDR-II SDRAM Mini-DIMM.
3.2 GB/sec bandwidth and CANNOT be pipelined.

e 133 MHz capable PCI-X interface.

e 4x2.5Gbps external serial link channels (Infiniband).

3 Host computer

Any 1386 or x86-64 host can be used. In this work HP Proliant
GL360g3 server with dual core Intel® Xeon = 3.06GHz CPU
and 1IMB RAM was used.

4 Code execution on a host with FPGA

code.c listing:

(]

/* Write the toggled valuel}\\
of Control to kick start} \\
the DIMEc process} \\
*/
DIMETalk_Write(hTalk,&Config, <- FPGA API call
ONEWORD, addressO,
memory_map_0,timeout)

getchar() ; <- ANSI C

/* Keep reading whilst busy

*/

while ((Config&Ox4) '= 0) { <- ANSI C
DIMETalk_Read(hTalk, <- FPGA API call
&Config,ONEWORD,ddressO,
memory_map_0,timeout) ;

(]

So it is very easy to delegate tasks to H101 from ANSI C using
FPGA API calls, which Nallatech call FUSE API calls [3, 4].

The most important FUSE API calls for end user are

o [DIMETalk Write - write data to H101 nodes

e |DIMETalk Read| - read data from H101 nodes

N

8.
9.

Code design for a host with H101

. Decide what parts of the original code are [best suited| for

FPGA.

. | Translate] those parts to C functions.

. Optimise C for FPGA.
. Translate optimised C to [MHDL] (hardware description

language). This is done with Nallatech [DIME=C] [5] com-
piler.

. Program H101, i.e. 'build"a network| to be implemented

on the Xilinx chip. This is done with Nallatech [DIMETalk|
[6] application builder tool.

. Add DIMETalk [API'calls], which will talk to H101, to the

source code.

. Compile the complete code, with e.g. [§€€], using Nallat-

ech [libraries|
'Load| the network to H101.

'Run| the code on host.

6 Fortran — C — DIME-C

The original CA code was in [F90. No automatic Fortran to
C conversion tool available for F90 and above, £2¢ works only

for F77.

First, all F90 code was translated to C - !
Second, DIME-C |EISESIRGHIEUBBSIE following ANSI C struc-

tures, relevant to the CA code. The full list is in [5].

1. pointers

multi-dimensional arrays

Switch (Fortran CASE) statements
do-while loops

labeled and goto statements

o o0 kW N

const type qualifier

7 DIME-C compilation

[&] pIME-C [C:\Documents and Settings\mexas\My Documents\workinallatechica\ca.dc1]

File Edit view Workspace Project Help —
2n - = -] &
NoEHZFe P2RE O0d Q
F == cadel 2dc lneigh\-"isualisation] ca\-"isualisation]
F 2d.c »
for (i=0; i < size; i++) |
matrZ2[i] = matrl[i]:
H
* growth *
a * gend=1 i1nitially. When no empty cells are left aend=0
t asnd = 1;
while (aend)
5 -
ey
aend = 0; d I
L for (i=0; i <« =size; i++) matrl[i] = matcri([i]:
for (i=0; i < size; i++)
I .
s if (matrl[i] == 0)
Iy { cte
aend = 1;
= o - . ke
neigh (neighglob,i):
t randn = rand();
In arandn = (fleoat)randn/MY RAND MAX: mj
s direction = (int) (arandn¥*8):;
matrZ[i] = matrl[neighglob[direction]]:
iy }
s }
H
E for (i=0; i < =size; i++) carr[i] = matrZ2[i]; L3
')
Froject Files < | >
Status : Generating VHDL »
Projected Slice Resource Required ; 1846
Status : Build completed sucessfully..
Projected slice resource required for all functions: 3574
“)|Built Project =
] b
] Line: 157 |Col: 27 4 .
Figure 5: DIME-C screenshot with CA code.
Important:

e Only innermost loops are pipelined, so nested loops are

bad .

e If a variable is assessed and assigned in a scope, the scope

I8 be pipelined.

e math.h and generic rand () are !

8 DIME-C pipelining (parallelisation)

[&] pIME-C [C:\Documents and Settingsimexasi\My Documentsiworkinallatech\ca\ca.dc1] |Z||E|['S__(|
1 Cof File Edit View Workspace Project Help

HOhpE@E 2R 04 Q

archll [= ca.dol 2dc] neigh Visualisation ©a Visualization l
2o | As| A=][Loo LooF j
fis | Ao & [IF
At . Auss
Assignment_32Bits_SignedInteger
A =Temp30
Q=0CLéi
w 5 Total Pipeline Delay = 1
— Pipeline Delay = 1
Pipeline Logic Depth = 2
sy Pipeline Total Logic Depth =2 i‘
Width = 32
Choll Project Files ﬂ D =82 k

Compiling...

CDocuments and Settingsimexas\My Documentsworkinallatech\ca\2d.c
Compiled with no errors.

Building project ca.dc1

Building: DC0_0_neigh

Targeting Device: XC4VLX100

Status : Collapsing pipeline functions
Status : Mapping operators

Status : Linking Logic

Status : Generating VHDL

Projected Slice Resource Required : 1728
Status : Build completed sucessfully...
Building: DCO0_0_ca

Targeting Device: XC4VLX100

Status : Collapsing pipeline functions
Status : Mapping operators

Status : Linking Logic

Status : Generating VHDL

Projected Slice Resource Required : 1846
Status : Build completed sucessfully...
Projected slice resource required for all functions: 3574
Built Project

= Line: 157 |Col: 27 &
A " 4]\

Figure 6: DIME-C pipelining analysis for CA code.

The secret of FPGA success is parallelisation or !
DIME-C provides the pipelining report. The colourscheme is:

pipelined loop - fast
not pipelined - delays

choice - not pipelined -delays

Also the size of resulting VHDL is reported in slices. H101
Virtex chip has 49k slices. This code needs 3.5k.

9 DIMETalk — building FPGA network

DIMETalk is a graphical tool for interconnecting pre-existing
VHDL primitives, plus the user-defined VHDL, and creating a
complete FPGA network.

[&] pIMEtalk Systems Design [C:\Documents and Settings\mexas\My Documentsiworkinallatech\ca\ca.dt3] |Z||E|[g|

File Edit View Utilites Generation Help ———————

IoER &8 ¢ y0F L@t & a g -

] Basic intemal FPGA nodes | Bridges | Routers | System | DIME-C | Legacy BlockRiéM Modes | Vitesd DDR2 Memory | DDR SDRAM

.| D

cixm_0
Cleahd i
h101_pcism_0
H107-PCI<M Virkexd L<100/L<160 single FPGA board 1= E
ME-C mof
cternal Cof
0.0 e f—a | DIME-C module - ca.dc F BlockRam Node
]] External Component S CMEtalk node #1
T DCO 0 ca_TOP_D block_ram_0
e 1 " block_ram_0 [Addi: 1]
- DEO_0_ca_TOP_O
mory_m. - LU ca !
{Eem Memony Map A Four way non-blocking
A 11 DIMEtslk nods 22 o @ DIMEtsk Router - 00_clacks 0
£l memony_map_0 rowuter_0 - h100_peix_kost_interface_0[Addr: 0]

o memon_map_0[Addr: 2]

e roLber_0
¥ PCI-X
{Etalk ed
o H100 PCI-X Clocks &

0_peie_h ;

u_pew H100 PCI-X Host L/F B8 Ciock/Resst Compans
DIMEtalk edge #D]
h100_peie_hest_interfa §I T

GGy hi00_clocks_0

 DIME3

Figure 7: DIMETalk screenshot showing the network.

e Internal [block RAM to store CA arrays.

e All components are placed on the H101 [devicel.
e 2 [nodes|: block RAM and Memory Map.

e The _ is required to start the code.
e Clock| ! and [Router| are 3 other required compo-

nents.

10

10 DIMETalk — CA user-defined VHDL signals

Back - - Reload Home | | file:///C:/Documents®:20and%:205ettings/mexas My 3:20Documents fwork/nallatechfca/himl/DCO_0_ca_TOP_0.html

g}) AltaVista Search: colors teal salmon £\ Mallatech HPC Developer - Re:Rando... L] (Untitled) || DIMEtalk Network HTML docume... |3
Component: DC0_0_ca_TOP_0

Description: External Component.
Name: DCO_0_ca_TOP_0.

CLE o COME
RESET [y BUSY
GO [DCO 0_ca DT_DCO_1_car_addr
DCO_0_ca DT_DCO_1_can_data_out [DCO0_0_ca DT_DCO 1_can_ena
DCO_0_ca REGISTERS_addr [DCO_0_ca DT_DCO_1_cam_we
DCO_0_ca REGISTERS enable [DCO 0 ca DT_DCO_1_can_data_in
DCO_0_ca REGISTERS_wenable [DCO_0_ca REGISTERS_data_in
DCO_0_ca REGISTERS_data_out [
Connections
Group Type Connected to... Signal Description Signal Width
CLK Clock Connection | CLKA CLK :in STD_LOGIC, 1
RESET Re=zet Connection | DIMEtalk Reset RESET : in STD_LOGIC; 1
GO :in STD_LOGIC; 1
GO User Connection | Mothing DNONE : out STD_LOGIC; 1
BUSY : out STD_LOGIC; 1
DCO0_0_ca_DT_DCO_1_carr_addr : out STD_LOGIC_WECTOR(31 downto 0); 32
DCO0_0_ca_DT_DCO_1_carr_ena : out STO_LOGIC; 1
DCO_1_carr_BRAM User Connection |Block ram O/Userinterface DCO0_0_ca_DT_DCO_1_carr_we : out STO_LOGIC; 1
DCO0_0_ca_DT_DCO_1_carr_data_in : out STD_LOGIC_VECTOR(31 downto 0); |32
DCO0_0_ca_DT_DCO_1_carr_data_out : in STO_LOGIC_VECTOR(31 downto 0); [32
DC0_0_ca_REGISTERS_addr : in STO_LOGIC_VECTOR(31 downto 0} 32
DC0_0_ca_REGISTERS_enable : in STO_LOGIC; 1
DCO0_0_ca_MemoryMap | User Connection |memcry map 0/Userinterface [DC0_0_ca_REGISTERS_wenable : in STD_LOGIC, 1
DC0_0_ca_REGISTERS_data_out : in STD_LOGIC_VECTOR(31 downto 0); 3z

Done

Figure 8: DIMETalk: CA user-defined VHDL signals.

e Each DIME-C array must have its own RAM bank.

e Signal group [DCO_1 carrr BRAM is for communication

with RAM. 1 is the first data array and, accordingly, the
first RAM bank. carr is the only data array.

e Signal group [DCO_0_ca_MemoryMap is for communica-
tion with the Memory Map node.

11

11 Optional: DIMECheck — FPGA network test

As a part of network build a dimetest.wish script is gen-
erated. It calls DIMECheck - network interactive diagnostics
tool.

IIII'1EI:Z}'|E|::I=:. - Mallatech's TeclATk DIMEtalk Tester

Open Cards Options Help

[E Hioo- pois_1

f-]- DIMEtelk_Mehuork
=

i, DIMERIK_Nodes
"% Mode 001- RA b 4096
"% Mode 002 fdemory_ ap

[-]-% H101- PCIM K1
Virter4 LA100_0

= WMGT_ EHdge_ WickaDl ME_O

|F%ﬂw| 405k, software id: 1, cape id: 1, Yersion: 000, F

Select a bitfile

Directory: /homefmexasfgrainsfsourcefh101_pcizm_0 -| |

El 101 _pci=m_0. kit

P~ [~

File name: | Open

Files of type: Bitfile (*.hit)

Figure 9: DIMECheck: loading the bitfile onto H101.

e In this network BlockRAM is limited to 2'2 = 4096 int
words.

e The network can be triggered interactively from DIMECheck.

12

12

DIMETalk API calls - add to main c code on host

259 void cahost(int *A,int *B, DIME_HANDLE hTalk)

260 {
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287 }

DWORD Config;

DWORD timeout = 1000;
int addressO = 0;

int ONEWORD = 1;

//Write the array to the FPGA memory node
DIMETalk_Write(hTalk, (DWORD*)A, (DWORD)sizem,address0,block_ram_O,timeout) ;

//Read the value of the ’GO’ bit in the memorymap and toggle
DIMETalk_Read(hTalk,&Config,ONEWORD, address0O,memory_map_O,timeout);
if (Config&Ox1)

Config = O;
else
Config = 1;

//Write the toggled value of Control to kick start the DIMEc process
DIMETalk_Write(hTalk,&Config,ONEWORD,address0O,memory_map_O,timeout) ;

getchar();

//Keep reading whilst busy
while ((Configk0Ox4) '= 0) {
DIMETalk_Read (hTalk,&Config,ONEWORD, address0,memory_map_O,timeout) ;
}
//Read the results back
DIMETalk_Read(hTalk, (DWORD*)B, (DWORD)sizem,addressO,block_ram_0,timeout) ;

13

13 DIMETalk API calls explained

Line [267): write array to FPGA memory node starting from 0.
The memory node is Block RAM (block_ram_0).

Lines [270-274|: read the zero (‘GO’) bit of Memory Map ad-
dress 0 and toggle it. Togging the GO bit starts the user code.

Line [277]: write the toggled GO bit to Memory Map - start
the code.

Lines |282-283: bit 4 of Memory Map address 0 is ‘BUSY’

read it until it is zero.

Line [286: when the FPGA code is complete read the array
back from the Block RAM.

14

14 FPGA result 1 — Block RAM smaller than array

188=x188 2D CA array

Figure 10: 100x100 cell CA array with 10 grains simulated with H101.

In this example Block RAM was 4096 int words, therefore when
the data is written back from FPGA, extra array elements are
repeated.

Something is also wrong with the random numbers — no grains
1or?2.

15

18

15 FPGA result 2 — array fitting inside Block RAM

6B8x68 2D CA array

Figure 11: 60x60 cell CA array with 5 grains simulated with H101.

In this example data fits within Block RAM, so no repetition
Is present.

Still grain 1 is only one cell - !

16

16 Grumble

e DIME-C and DIMETalk are only available for MS Win-
dows. Even worse, full administrative privileges must be
used to run each program!

e DIME-C manual is out of date. Many important features
are not documented.

e DIMETalk build of CA takes about 30 min on dual core
AMDG64 laptop with 3GB RAM. Any change in user code
means network rebuild — slow debugging and code devel-
opment.

17 Future

e Try SRAM and SDRAM for bigger models.

e H101 speed-up measurements

e Floating point code on H101, e.g. numerical solution of a
system of PDEs.

17

18 Conclusions

e Steep learning curve, complex development — [B&E.

e Fortran codes must be translated to C — lots of manual

work — B,

e Most algorithms will have to be rethought due to the con-
straints of DIME-C, e.g. no multi-dimensional arrays —

e A completed FPGA network is used simply with FUSE API
calls. Can be called from any C code — [good'.

e hpc-nallatech. com user and developer forum — all Nal-

latech users 'welcome

18

19 Acknowledgements

The author gratefully acknowledges financial support from The
Royal Society in form of the Research Grant. He would also
like to acknowledge help and advice he received from Nallatech
engineers Daniel Denning, Robin Bruce and Rich Deiner.

References

[1] A. Shterenlikht and I. C. Howard. The CAFE model of frac-
ture — application to a TMCR steel. Fatigue and Fracture of
Engineering Materials and Structures, 29(9-10):770-787,
2006.

[2] Nallatech. H101-PCIX Reference Guide, Issue 1, 2007.

[3] Nallatech. FUSE C/C++ API Developer’s Guide, Issue 11,
2007.

[4] Nallatech. FUSE System Software User Guide, Issue 8,
2007.

[5] Nallatech. DIME-C User Guide, Issue 1, 2005.
[6] Nallatech. DIMEtalk 3.1 User Guide, Issue 4.1, 2007.

19

	1 Application
	1.1 Microstructure generation with CA

	2 Nallatech H101-PCIXM FPGA
	2.1 Nallatech H101-PCIXM tech data

	3 Host computer
	4 Code execution on a host with FPGA
	5 Code design for a host with H101
	6 Fortran C DIME-C
	7 DIME-C compilation
	8 DIME-C pipelining (parallelisation)
	9 DIMETalk -- building FPGA network
	10 DIMETalk -- CA user-defined VHDL signals
	11 Optional: DIMECheck -- FPGA network test
	12 DIMETalk API calls - add to main c code on host
	13 DIMETalk API calls explained
	14 FPGA result 1 -- Block RAM smaller than array
	15 FPGA result 2 -- array fitting inside Block RAM
	16 Grumble
	17 Future
	18 Conclusions
	19 Acknowledgements

