
Cellular Automata on Nallatech H101-PCIXM: first
results

Anton Shterenlikht
Mechanical Engineering Department, University of Bristol

University Walk, Bristol BS8 1TR, UK
Email mexas@bristol.ac.uk, Tel 0117 928 8233

March 31, 2008

Many-core and Reconfigurable Supercomputing Conference (MRSC) 2008

The Queen’s University of Belfast, Northern Ireland

1 Application

The Cellular Automata (CA) – Finite Element (CAFE) model
for transitional ductile to brittle fracture in steels [1] relies on
CA arrays to represent microstructure.

CA is a finite time machine with discrete cell states, which
depend on states of some neighbouring cells via very simple
transfer rules.

CA are integer or logical(boolean) arrays.

Fracture propagation with CA is a change of state from ‘alive’
to ‘dead’. Computationally CA are much cheaper than FE.

1

1.1 Microstructure generation with CA

Figure 1: Grain micrograph

Figure 2: CA simulated 2D grain microstructure, 1M cells, 10 grains
(colour denotes grain orientation). CA cells are approx. 2 µm.

2

2 Nallatech H101-PCIXM FPGA

Figure 3: H101-PCIXM top view [2].

Figure 4: H101-PCIXM bottom view [2].

3

2.1 Nallatech H101-PCIXM tech data

• Xilinx Virtex-4 LX100 (XC4VLX100-10FF1148C) - FPGA.
Maximum FPGA clock frequency - 200 MHz.

• 0.4MB internal block RAM per FPGA.
0.5 TB/sec bandwidth and can be pipelined.

• 4 banks (4×4=16MB) of DDR-II SRAM.
6.4 GB/sec bandwidth and can be pipelined.

• 1 bank (512MB) DDR-II SDRAM Mini-DIMM.
3.2 GB/sec bandwidth and CANNOT be pipelined.

• 133 MHz capable PCI-X interface.

• 4×2.5Gbps external serial link channels (Infiniband).

3 Host computer

Any i386 or x86-64 host can be used. In this work HP Proliant
GL360g3 server with dual core Intel R© XeonTM 3.06GHz CPU
and 1MB RAM was used.

4

4 Code execution on a host with FPGA

code.c listing:

[...]

/* Write the toggled value}\\
of Control to kick start} \\
the DIMEc process} \\

*/
DIMETalk_Write(hTalk,&Config, <- FPGA API call

ONEWORD,address0,
memory_map_0,timeout)

getchar(); <- ANSI C

/* Keep reading whilst busy
*/
while ((Config&0x4) != 0) { <- ANSI C

DIMETalk_Read(hTalk, <- FPGA API call
&Config,ONEWORD,ddress0,
memory_map_0,timeout);

[...]

So it is very easy to delegate tasks to H101 from ANSI C using
FPGA API calls, which Nallatech call FUSE API calls [3, 4].

The most important FUSE API calls for end user are

• DIMETalk_Write - write data to H101 nodes

• DIMETalk_Read - read data from H101 nodes

5

5 Code design for a host with H101

1. Decide what parts of the original code are best suited for
FPGA.

2. Translate those parts to C functions.

3. Optimise C for FPGA.

4. Translate optimised C to VHDL (hardware description
language). This is done with Nallatech DIME-C [5] com-
piler.

5. Program H101, i.e. build a network to be implemented
on the Xilinx chip. This is done with Nallatech DIMETalk
[6] application builder tool.

6. Add DIMETalk API calls , which will talk to H101, to the
source code.

7. Compile the complete code, with e.g. gcc , using Nallat-
ech libraries .

8. Load the network to H101.

9. Run the code on host.

6

6 Fortran → C → DIME-C

The original CA code was in F90 . No automatic Fortran to
C conversion tool available for F90 and above, f2c works only
for F77.

First, all F90 code was translated to C manually !

Second, DIME-C does not support following ANSI C struc-
tures, relevant to the CA code. The full list is in [5].

1. pointers

2. multi-dimensional arrays

3. Switch (Fortran CASE) statements

4. do-while loops

5. labeled and goto statements

6. const type qualifier

7

7 DIME-C compilation

Figure 5: DIME-C screenshot with CA code.

Important:

• Only innermost loops are pipelined, so nested loops are
bad .

• If a variable is assessed and assigned in a scope, the scope
cannot be pipelined.

• math.h and generic rand() are provided .

8

8 DIME-C pipelining (parallelisation)

Figure 6: DIME-C pipelining analysis for CA code.

The secret of FPGA success is parallelisation or pipelining .
DIME-C provides the pipelining report. The colourscheme is:

Green pipelined loop - fast
Pink not pipelined - delays
Blue choice - not pipelined -delays

Also the size of resulting VHDL is reported in slices. H101
Virtex chip has 49k slices. This code needs 3.5k.

9

9 DIMETalk – building FPGA network
DIMETalk is a graphical tool for interconnecting pre-existing
VHDL primitives, plus the user-defined VHDL, and creating a
complete FPGA network.

Figure 7: DIMETalk screenshot showing the network.

• Internal block RAM to store CA arrays.

• All components are placed on the H101 device .

• 2 nodes : block RAM and Memory Map.

• The Memory Map is required to start the code.

• Clock , Edge and Router are 3 other required compo-
nents.

10

10 DIMETalk – CA user-defined VHDL signals

Figure 8: DIMETalk: CA user-defined VHDL signals.

• Each DIME-C array must have its own RAM bank.

• Signal group DC0_1_carr_BRAM is for communication
with RAM. 1 is the first data array and, accordingly, the
first RAM bank. carr is the only data array.

• Signal group DC0_0_ca_MemoryMap is for communica-
tion with the Memory Map node.

11

11 Optional: DIMECheck – FPGA network test
As a part of network build a dimetest.wish script is gen-
erated. It calls DIMECheck - network interactive diagnostics
tool.

Figure 9: DIMECheck: loading the bitfile onto H101.

• In this network BlockRAM is limited to 212 = 4096 int
words.

• The network can be triggered interactively from DIMECheck.

12

12 DIMETalk API calls - add to main c code on host

259 void cahost(int *A,int *B, DIME_HANDLE hTalk)
260 {
261 DWORD Config;
262 DWORD timeout = 1000;
263 int address0 = 0;
264 int ONEWORD = 1;
265
266 //Write the array to the FPGA memory node
267 DIMETalk_Write(hTalk,(DWORD*)A,(DWORD)sizem,address0,block_ram_0,timeout);
268
269 //Read the value of the ’GO’ bit in the memorymap and toggle
270 DIMETalk_Read(hTalk,&Config,ONEWORD,address0,memory_map_0,timeout);
271 if (Config&0x1)
272 Config = 0;
273 else
274 Config = 1;
275
276 //Write the toggled value of Control to kick start the DIMEc process
277 DIMETalk_Write(hTalk,&Config,ONEWORD,address0,memory_map_0,timeout);
278
279 getchar();
280
281 //Keep reading whilst busy
282 while ((Config&0x4) != 0) {
283 DIMETalk_Read(hTalk,&Config,ONEWORD,address0,memory_map_0,timeout);
284 }
285 //Read the results back
286 DIMETalk_Read(hTalk,(DWORD*)B,(DWORD)sizem,address0,block_ram_0,timeout);
287 }

13

13 DIMETalk API calls explained

Line 267 : write array to FPGA memory node starting from 0.
The memory node is Block RAM (block_ram_0).

Lines 270-274 : read the zero (‘GO’) bit of Memory Map ad-
dress 0 and toggle it. Togging the GO bit starts the user code.

Line 277 : write the toggled GO bit to Memory Map - start
the code.

Lines 282-283 : bit 4 of Memory Map address 0 is ‘BUSY’
read it until it is zero.

Line 286 : when the FPGA code is complete read the array
back from the Block RAM.

14

14 FPGA result 1 – Block RAM smaller than array

Figure 10: 100x100 cell CA array with 10 grains simulated with H101.

In this example Block RAM was 4096 int words, therefore when
the data is written back from FPGA, extra array elements are
repeated.

Something is also wrong with the random numbers – no grains
1 or 2.

15

15 FPGA result 2 – array fitting inside Block RAM

Figure 11: 60x60 cell CA array with 5 grains simulated with H101.

In this example data fits within Block RAM, so no repetition
is present.

Still grain 1 is only one cell – bugs .

16

16 Grumble

• DIME-C and DIMETalk are only available for MS Win-
dows. Even worse, full administrative privileges must be
used to run each program!

• DIME-C manual is out of date. Many important features
are not documented.

• DIMETalk build of CA takes about 30 min on dual core
AMD64 laptop with 3GB RAM. Any change in user code
means network rebuild – slow debugging and code devel-
opment.

17 Future

• Try SRAM and SDRAM for bigger models.

• H101 speed-up measurements

• Floating point code on H101, e.g. numerical solution of a
system of PDEs.

17

18 Conclusions

• Steep learning curve, complex development – bad .

• Fortran codes must be translated to C – lots of manual
work – bad .

• Most algorithms will have to be rethought due to the con-
straints of DIME-C, e.g. no multi-dimensional arrays –
bad .

• A completed FPGA network is used simply with FUSE API
calls. Can be called from any C code – good .

• hpc-nallatech.com user and developer forum – all Nal-
latech users welcome !

18

19 Acknowledgements

The author gratefully acknowledges financial support from The
Royal Society in form of the Research Grant. He would also
like to acknowledge help and advice he received from Nallatech
engineers Daniel Denning, Robin Bruce and Rich Deiner.

References

[1] A. Shterenlikht and I. C. Howard. The CAFE model of frac-
ture – application to a TMCR steel. Fatigue and Fracture of
Engineering Materials and Structures, 29(9-10):770–787,
2006.

[2] Nallatech. H101-PCIX Reference Guide, Issue 1, 2007.

[3] Nallatech. FUSE C/C++ API Developer’s Guide, Issue 11,
2007.

[4] Nallatech. FUSE System Software User Guide, Issue 8,
2007.

[5] Nallatech. DIME-C User Guide, Issue 1, 2005.

[6] Nallatech. DIMEtalk 3.1 User Guide, Issue 4.1, 2007.

19

	1 Application
	1.1 Microstructure generation with CA

	2 Nallatech H101-PCIXM FPGA
	2.1 Nallatech H101-PCIXM tech data

	3 Host computer
	4 Code execution on a host with FPGA
	5 Code design for a host with H101
	6 Fortran C DIME-C
	7 DIME-C compilation
	8 DIME-C pipelining (parallelisation)
	9 DIMETalk -- building FPGA network
	10 DIMETalk -- CA user-defined VHDL signals
	11 Optional: DIMECheck -- FPGA network test
	12 DIMETalk API calls - add to main c code on host
	13 DIMETalk API calls explained
	14 FPGA result 1 -- Block RAM smaller than array
	15 FPGA result 2 -- array fitting inside Block RAM
	16 Grumble
	17 Future
	18 Conclusions
	19 Acknowledgements

